Characteristics of MBR Operating Conditions for Enhancing the Filtration Performance of MBR Process

2021 ◽  
Vol 29 (3) ◽  
pp. 27-33
Author(s):  
Hoon-Sup Jung ◽  
In-Soo Song ◽  
Kil-Soo Hyun
2013 ◽  
Vol 340 ◽  
pp. 903-907
Author(s):  
Xiao Jing Wang ◽  
Fan Wang ◽  
Ji Jin

Based on the filtration experiment of a rotary filter press equipped with the filtration fabric, this paper presents a study on the dynamic filtration performance and the filtration resistance of anthranilic acid copper during the production of saccharin sodium. The best possible operating condition is expected by examining the influence on the filtration rate and its attenuation in different operating conditions, which can provide guidance for future industrial applications, and an efficient regeneration method is proposed.


2021 ◽  
Vol 83 (6) ◽  
pp. 1459-1469
Author(s):  
Yulan Gao ◽  
Jie Yang ◽  
Xinwei Song ◽  
Dongmei Shen ◽  
Wanfen Wang ◽  
...  

Abstract Several water treatment techniques have been combined using the sequencing batch reactor with the membrane bioreactor for addressing water pollution. However, cleaning of the membrane is dependent on the approach involved as well as the operating conditions. In the present study, the sequencing-batch membrane bioreactor was used to treat real mixed municipal wastewater. The pollutant removal and membrane filtration performances were examined. The results show that the average removal rates of chemical oxygen demand (COD), total nitrogen, NH3-N, total phosphorus, and turbidity were 90.75, 63.52, 92.85, 87.58, and 99.48%, respectively, when the system was in continuous operation for 95 days. The membrane had a significant effect on COD and turbidity removal and provided stable performances for nitrogen and phosphorus removal. By observing the appearance of the membrane modules before and after the cleaning operation, it was concluded that the deposited sludge and granular sediment on the membrane surface can be effectively removed by hydraulic cleaning. In addition, recovery of membrane filtration performance to 60% of that of a new membrane can be achieved. Furthermore, we found that different sequences and duration of cleaning have different effects on the recovery of membrane filtration performance.


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3377
Author(s):  
Anna Cescon ◽  
Jia-Qian Jiang

In drinking water treatment, filtration plays an important role in the multi-barrier approach employed for the removal of pathogens. The presence of suspended solids and other particulate matter in water increases the resistance of most microbes to disinfection. Therefore, high performance in the removal of particles achieved by granular filtration can increase the disinfection efficiency. Although sand is one of the major filter media, alternative media have been developed and used in recent years. In this review, the performance of alternative media is compared with traditional sand/anthracite for drinking water treatment. Advantages in the use of alternative media, especially glass media, have been found, including high filtration performance in removing residual particles and turbidity, minor modification requirements to the existing filtration configuration and slow head loss development. However, before the employment of them in industry, additional tests are recommended. In particular, full scale tests with variations in the operating conditions and analyses of pathogen removal should be performed. Moreover, this paper reviews the filtration processes and operating configurations which provide overall references to those who are studying and working in the field of water technology and treatment. In this paper, legislations/standards of safe drinking water are summarized as they are the driving force of developing new treatment technologies; mathematical modules for predicting the media filtration performance are briefed. Finally, future work on the application of alternative filter media is recommended.


2015 ◽  
pp. 280-287
Author(s):  
Christopher D. Rhoten

Procedures noted herein will result in relatively optimal prelimer control and performance. Through the application of the procedures and control methods noted, it is possible to maintain relatively optimal preliming performance over a relatively wide range of operating conditions and beet quality. Certain severe adverse conditions affecting 1st carbonatation slurry filtration performance may require somewhat higher final preliming alkalinity than indicated by the test for determination of the optimum endpoint. Such conditions may be indicated by an abnormal flattening of the minimum point of the optimum alkalinity determination plot of transmittance difference between filtered and unfiltered sample aliquots.


Author(s):  
E.D. Boyes ◽  
P.L. Gai ◽  
D.B. Darby ◽  
C. Warwick

The extended crystallographic defects introduced into some oxide catalysts under operating conditions may be a consequence and accommodation of the changes produced by the catalytic activity, rather than always being the origin of the reactivity. Operation without such defects has been established for the commercially important tellurium molybdate system. in addition it is clear that the point defect density and the electronic structure can both have a significant influence on the chemical properties and hence on the effectiveness (activity and selectivity) of the material as a catalyst. SEM/probe techniques more commonly applied to semiconductor materials, have been investigated to supplement the information obtained from in-situ environmental cell HVEM, ultra-high resolution structure imaging and more conventional AEM and EPMA chemical microanalysis.


Author(s):  
David A. Ansley

The coherence of the electron flux of a transmission electron microscope (TEM) limits the direct application of deconvolution techniques which have been used successfully on unmanned spacecraft programs. The theory assumes noncoherent illumination. Deconvolution of a TEM micrograph will, therefore, in general produce spurious detail rather than improved resolution.A primary goal of our research is to study the performance of several types of linear spatial filters as a function of specimen contrast, phase, and coherence. We have, therefore, developed a one-dimensional analysis and plotting program to simulate a wide 'range of operating conditions of the TEM, including adjustment of the:(1) Specimen amplitude, phase, and separation(2) Illumination wavelength, half-angle, and tilt(3) Objective lens focal length and aperture width(4) Spherical aberration, defocus, and chromatic aberration focus shift(5) Detector gamma, additive, and multiplicative noise constants(6) Type of spatial filter: linear cosine, linear sine, or deterministic


Author(s):  
M. Pan

It has been known for many years that materials such as zeolites, polymers, and biological specimens have crystalline structures that are vulnerable to electron beam irradiation. This radiation damage severely restrains the use of high resolution electron microscopy (HREM). As a result, structural characterization of these materials using HREM techniques becomes difficult and challenging. The emergence of slow-scan CCD cameras in recent years has made it possible to record high resolution (∽2Å) structural images with low beam intensity before any apparent structural damage occurs. Among the many ideal properties of slow-scan CCD cameras, the low readout noise and digital recording allow for low-dose HREM to be carried out in an efficient and quantitative way. For example, the image quality (or resolution) can be readily evaluated on-line at the microscope and this information can then be used to optimize the operating conditions, thus ensuring that high quality images are recorded. Since slow-scan CCD cameras output (undistorted) digital data within the large dynamic range (103-104), they are ideal for quantitative electron diffraction and microscopy.


Sign in / Sign up

Export Citation Format

Share Document