DEVELOPMENT OF A NONDESTRUCTIVE MEASUREMENT SYSTEM TO OBTAIN EXUBERANCE INDEX OF FOLIAGE DURING GREENHOUSE CROP GROWTH BY LOW-COST NEAR-INFRARED LIGHT SENSORS

2014 ◽  
pp. 627-634 ◽  
Author(s):  
T. Hoshi ◽  
K. Suzuki ◽  
J. Imahara ◽  
K. Yasuba ◽  
T. Nanseki
2020 ◽  
Vol 15 (1) ◽  
pp. 24-31
Author(s):  
Zeshan Shoaib ◽  
Junhyun Kim ◽  
M. Ahmad Kamran ◽  
Myung Yung Jeong

Optical brain imaging has the potential for a bright future thanks to its low cost and portability relative to other biomedical imaging modalities. Temporal and spatial resolutions are considered to be the discriminatory features for selection of biomedical imaging equipment. Optical brain imaging systems, however, still face the bottleneck of limited spatial resolution. In this study, a novel method for guiding near infrared light at one of two particular gaps spaced nanometers apart has been presented. It includes the design of a nanogap nano-antenna for measurement of overlapping information on vicinities of only nanoscale separation distance, which could result in enhancement of the spatial resolution of optical brain imaging systems. The design of the proposed nano-gap nano-antenna channels near-infrared light to a specific path among two gaps separated by a nanometer-scale distance. A supportive analysis of gap design also is presented in this study. Additionally, the results of a comprehensive analysis of the behavior of light through the designed nano-gap nano-antenna are provided. The proposed methodology is a practical substitute for a high-density probe arrangement as well as a possible means of spatial resolution enhancement.


2020 ◽  
Vol 59 (11) ◽  
pp. 110906
Author(s):  
Juan Shen ◽  
Yong Ren ◽  
Xinxin Zhu ◽  
Min Mao ◽  
Quan Zhou ◽  
...  

Author(s):  
Xiaowei Luan ◽  
Yongchun Pan ◽  
Yanfeng Gao ◽  
Yujun Song

Light has witnessed the history of mankind and even the universe. It is of great significances to the life of human society, contributing to energy, agriculture, communication, and much more....


Pharmaceutics ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 52
Author(s):  
Atanu Naskar ◽  
Sohee Lee ◽  
Kwang-sun Kim

Antibiotic therapy is the gold standard for bacterial infections treatment. However, the rapid increase in multidrug-resistant (MDR) bacterial infections and its recent use for secondary bacterial infections in many COVID-19 patients has considerably weakened its treatment efficacy. These shortcomings motivated researchers to develop new antibacterial materials, such as nanoparticle-based antibacterial platform with the ability to increase the chances of killing MDR strains and prevent their drug resistance. Herein, we report a new black phosphorus (BP)-based non-damaging near-infrared light-responsive platform conjugated with ZnO and Au nanoparticles as a synergistic antibacterial agent against Staphylococcus aureus species. First, BP nanosheets containing Au nanoparticles were assembled in situ with the ZnO nanoparticles prepared by a low-temperature solution synthesis method. Subsequently, the antibacterial activities of the resulting Au–ZnO–BP nanocomposite against the non-resistant, methicillin-resistant, and erythromycin-resistant S. aureus species were determined, after its photothermal efficacy was assessed. The synthesized nanocomposite exhibited excellent anti-S. aureus activity and good photothermal characteristics. The non-resistant S. aureus species did not produce drug-resistant bacteria after the treatment of multiple consecutive passages under the pressure of the proposed nanoantibiotic, but rapidly developed resistance to erythromycin. This work clearly demonstrates the excellent photothermal antibacterial properties of Au–ZnO–BP nanocomposite against the MDR S. aureus species.


Sign in / Sign up

Export Citation Format

Share Document