Processing tomato by-products re-use, secondary raw material for tomato product with new functionality

2019 ◽  
pp. 255-260
Author(s):  
L. Sandei ◽  
C. Stingone ◽  
R. Vitelli ◽  
E. Cocconi ◽  
A. Zanotti ◽  
...  
2014 ◽  
Vol 1000 ◽  
pp. 170-173
Author(s):  
Vit Cerný

At present high temperature fly ashes are already quite widely used as a secondary raw material in building materials. Fly ashes are usually able to fully replace classical materials. FBC ashes also gradually finding their place for example in production of autoclaved aerated concrete, in binders or solidification of hazardous waste. However, the coarser types of energy by-products are relatively difficult to use. Therefore, this part of the work focused on the study of usability of bottom ashes for artificial sintered aggregates. The article will focus on results of laboratory firing in muffle furnace, dedicated to testing of maximum bottom ash content in the mixture with the fly ash and special type of clay.


2019 ◽  
Vol 14 (7) ◽  
pp. 1934578X1986290 ◽  
Author(s):  
Massimo Tacchini ◽  
Ilaria Burlini ◽  
Immacolata Maresca ◽  
Alessandro Grandini ◽  
Tatiana Bernardi ◽  
...  

Vitis vinifera L. leaves from pruning are by-products of the wine industry and represent an important source of secondary raw material, thanks to their polyphenols content. Optimization of the extraction processes is a key factor for their valorization, and Design of Experiment (DOE) could be a tool to obtain the most performing extract in terms of polyphenols quality/quantity and bioactivity. Vitis vinifera Lambrusco leaves were subjected to ultrasound-assisted extractions guided by a 23 factorial design. Three independent parameters (% solvent, time of extraction, and solvent:solid ratio) were considered to evaluate the extraction process by analyzing the extraction yield, the total phenolic content (Folin-Ciocalteu assay), and the antioxidant capacity (DPPH assay). Moreover, the content of the main molecules was identified and quantified by reversed-phase high-performance liquid chromatography coupled with diode array detection and mass spectrometry. The DOE highlighted the best extraction conditions that showed slight changes considering the different evaluating parameters. The highest extraction yield was obtained by extraction with 100% water, 60 minutes of extraction time, and 30:1 solvent:solid ratio, but it was neither the richest in polyphenols nor antioxidant capacity. The latter 2 characteristics were associated with the extraction performed using 50% ethanol, 35 minutes of extraction time, and a 20:1 solvent:solid ratio. That extract also exhibited the highest quantity of flavonols.


2009 ◽  
Vol 1216 ◽  
Author(s):  
Masataka Murahara ◽  
Kazuichi Seki ◽  
Yuji Sato ◽  
Etsuo Fujiwara

AbstractSodium metal reacts with water explosively to generate hydrogen. Therefore, sodium metal can have an important role as a hydrogen storage material. Seawater contains water most and sodium second. Seawater is electrolyzed by offshore wind or solar cell power generation to produce sodium; which is transported to a thermoelectric power plant on land and then is reacted with water to produce hydrogen for electric power generation. Sodium hydroxide, a by-product, is used as a raw material for soda industries. In the sodium production process, many by-products such as fresh water, magnesium, sodium hydroxide, hydrochloric acid, and sulfuric acid are produced. Thus, sodium metal is an economical, renewable, and sustainable fuel that discharges neither CO2 nor radioactivity.


2015 ◽  
Vol 17 (5) ◽  
pp. 1161-1169 ◽  
Author(s):  
Natalia Junakova ◽  
Jozef Junak ◽  
Magdalena Balintova

Foods ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 203 ◽  
Author(s):  
Friederike Gutöhrlein ◽  
Stephan Drusch ◽  
Sebastian Schalow

In order to evaluate by-products from food processing as alternative raw materials for pectin extraction, their amount of galacturonic acid (GalA) has to be analysed as a marker for pectin content. In the present study, significant differences in GalA release using different digestion methods are shown for pea hulls, as an example of by-products with a high content of cellulose. Complete digestion of the fibre matrix was assumed for Saeman hydrolysis as a reference protocol. Significantly lower GalA release was achieved by a treatment with trifluoracetic acid (TFA). An alternative treatment with ethylenediaminetetraacetic acid (EDTA) at pH 11 followed by an enzymatic digestion at pH 4.5 using a combination of polygalacturonase (Vegazyme M) and cellulase (Celluclast 1.5L) resulted in a similar release of GalA compared to Seaman hydolysis. Pea hull samples, analysed by this alternative protocol, showed on average a GalA content of 11.2%. Therefore, pea hulls may serve as new raw material for pectin extraction.


2021 ◽  
Vol 4 ◽  
Author(s):  
Debomitra Dey ◽  
Jana K. Richter ◽  
Pichmony Ek ◽  
Bon-Jae Gu ◽  
Girish M. Ganjyal

The processing of agricultural products into value-added food products yields numerous by-products or waste streams such as pomace (fruit and vegetable processing), hull/bran (grain milling), meal/cake (oil extraction), bagasse (sugar processing), brewer's spent grain (brewing), cottonseed meal (cotton processing), among others. In the past, significant work in exploring the possibility of the utilization of these by-products has been performed. Most by-products are highly nutritious and can be excellent low-cost sources of dietary fiber, proteins, and bioactive compounds such as polyphenols, antioxidants, and vitamins. The amount of energy utilized for the disposal of these materials is far less than the energy required for the purification of these materials for valorization. Thus, in many cases, these materials go to waste or landfill. Studies have been conducted to incorporate the by-products into different foods in order to promote their utilization and tackle their environmental impacts. Extrusion processing can be an excellent avenue for the utilization of these by-products in foods. Extrusion is a widely used thermo-mechanical process due to its versatility, flexibility, high production rate, low cost, and energy efficiency. Extruded products such as direct-expanded products, breakfast cereals, and pasta have been developed by researchers using agricultural by-products. The different by-products have a wide range of characteristics in terms of chemical composition and functional properties, affecting the final products in extrusion processing. For the practical applications of these by-products in extrusion, it is crucial to understand their impacts on the qualities of raw material blends and extruded products. This review summarizes the general differences in the properties of food by-products from different sources (proximate compositions, physicochemical properties, and functional properties) and how these properties and the extrusion processing conditions influence the product characteristics. The discussion of the by-product properties and their impacts on the extrudates and their nutritional profile can be useful for food manufacturers and researchers to expand their applications. The gaps in the literature have been highlighted for further research and better utilization of by-products with extrusion processing.


Sign in / Sign up

Export Citation Format

Share Document