Effects of tree density, tree shape, and rootstock on ‘Bosc’ pears

2021 ◽  
pp. 163-170
Author(s):  
J. Lordan ◽  
P. Francescatto ◽  
T. Robinson
Keyword(s):  
2019 ◽  
Vol 244 ◽  
pp. 435-444 ◽  
Author(s):  
Jaume Lordan ◽  
Miguel Gomez ◽  
Poliana Francescatto ◽  
Terence L. Robinson

2018 ◽  
Vol 238 ◽  
pp. 303-317 ◽  
Author(s):  
Jaume Lordan ◽  
Poliana Francescatto ◽  
Leonel I. Dominguez ◽  
Terence L. Robinson

Life ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 408
Author(s):  
Gizachew Zeleke ◽  
Tatek Dejene ◽  
Wubalem Tadesse ◽  
Pablo Martín-Pinto

In this study, we evaluated stand status, dendrometric variables, and fruit production of Tamarind (Tamarindus indica L.) trees growing in bushland and farmland-use types in dryland areas of Ethiopia. The vegetation survey was conducted using the point-centered quarter method. The fruit yield of 54 trees was also evaluated. Tree density and fruit production in ha were estimated. There was a significant difference in Tamarind tree density between the two land-use types (p = 0.01). The mean fruit yield of farmland trees was significantly higher than that of bushland trees. However, Tamarind has unsustainable structure on farmlands. Differences in the dendrometric characteristics of trees were also observed between the two land-use types. Predictive models were selected for Tamarind fruit yield estimations in both land-use types. Although the majority of farmland trees produced <5000 fruit year−1, the selection of Tamarind germplasm in its natural ranges could improve production. Thus, the development of management plans to establish stands that have a more balanced diameter structure and thereby ensure continuity of the population and fruit yields is required in this area, particularly in the farmlands. This baseline information could assist elsewhere in areas that are facing similar challenges for the species due to land-use change.


Fire Ecology ◽  
2019 ◽  
Vol 15 (1) ◽  
Author(s):  
Jessie M. Dodge ◽  
Eva K. Strand ◽  
Andrew T. Hudak ◽  
Benjamin C. Bright ◽  
Darcy H. Hammond ◽  
...  

Abstract Background Fuel treatments are widely used to alter fuels in forested ecosystems to mitigate wildfire behavior and effects. However, few studies have examined long-term ecological effects of interacting fuel treatments (commercial harvests, pre-commercial thinnings, pile and burning, and prescribed fire) and wildfire. Using annually fitted Landsat satellite-derived Normalized Burn Ratio (NBR) curves and paired pre-fire treated and untreated field sites, we tested changes in the differenced NBR (dNBR) and years since treatment as predictors of biophysical attributes one and nine years after the 2007 Egley Fire Complex in Oregon, USA. We also assessed short- and long-term fuel treatment impacts on field-measured attributes one and nine years post fire. Results One-year post-fire burn severity (dNBR) was lower in treated than in untreated sites across the Egley Fire Complex. Annual NBR trends showed that treated sites nearly recovered to pre-fire values four years post fire, while untreated sites had a slower recovery rate. Time since treatment and dNBR significantly predicted tree canopy and understory green vegetation cover in 2008, suggesting that tree canopy and understory vegetation cover increased in areas that were treated recently pre fire. Live tree density was more affected by severity than by pre-fire treatment in either year, as was dead tree density one year post fire. In 2008, neither treatment nor severity affected percent cover of functional groups (shrub, graminoid, forb, invasive, and moss–lichen–fungi); however, by 2016, shrub, graminoid, forb, and invasive cover were higher in high-severity burn sites than in low-severity burn sites. Total fuel loads nine years post fire were higher in untreated, high-severity burn sites than any other sites. Tree canopy cover and density of trees, saplings, and seedlings were lower nine years post fire than one year post fire across treatments and severity, whereas live and dead tree basal area, understory surface cover, and fuel loads increased. Conclusions Pre-fire fuel treatments effectively lowered the occurrence of high-severity wildfire, likely due to successful pre-fire tree and sapling density and surface fuels reduction. This study also quantified the changes in vegetation and fuels from one to nine years post fire. We suggest that low-severity wildfire can meet prescribed fire management objectives of lowering surface fuel accumulations while not increasing overstory tree mortality.


Author(s):  
Meng Na ◽  
Xiaoyang Sun ◽  
Yandong Zhang ◽  
Zhihu Sun ◽  
Johannes Rousk

AbstractSoil carbon (C) reservoirs held in forests play a significant role in the global C cycle. However, harvesting natural forests tend to lead to soil C loss, which can be countered by the establishment of plantations after clear cutting. Therefore, there is a need to determine how forest management can affect soil C sequestration. The management of stand density could provide an effective tool to control soil C sequestration, yet how stand density influences soil C remains an open question. To address this question, we investigated soil C storage in 8-year pure hybrid larch (Larix spp.) plantations with three densities (2000 trees ha−1, 3300 trees ha−1 and 4400 trees ha−1), established following the harvesting of secondary mixed natural forest. We found that soil C storage increased with higher tree density, which mainly correlated with increases of dissolved organic C as well as litter and root C input. In addition, soil respiration decreased with higher tree density during the most productive periods of warm and moist conditions. The reduced SOM decomposition suggested by lowered respiration was also corroborated with reduced levels of plant litter decomposition. The stimulated inputs and reduced exports of C from the forest floor resulted in a 40% higher soil C stock in high- compared to low-density forests within 8 years after plantation, providing effective advice for forest management to promote soil C sequestration in ecosystems.


2019 ◽  
Vol 1 (1) ◽  
Author(s):  
D C Blackburn ◽  
G Giribet ◽  
D E Soltis ◽  
E L Stanley

Abstract Although our inventory of Earth’s biodiversity remains incomplete, we still require analyses using the Tree of Life to understand evolutionary and ecological patterns. Because incomplete sampling may bias our inferences, we must evaluate how future additions of newly discovered species might impact analyses performed today. We describe an approach that uses taxonomic history and phylogenetic trees to characterize the impact of past species discoveries on phylogenetic knowledge using patterns of branch-length variation, tree shape, and phylogenetic diversity. This provides a framework for assessing the relative completeness of taxonomic knowledge of lineages within a phylogeny. To demonstrate this approach, we use recent large phylogenies for amphibians, reptiles, flowering plants, and invertebrates. Well-known clades exhibit a decline in the mean and range of branch lengths that are added each year as new species are described. With increased taxonomic knowledge over time, deep lineages of well-known clades become known such that most recently described new species are added close to the tips of the tree, reflecting changing tree shape over the course of taxonomic history. The same analyses reveal other clades to be candidates for future discoveries that could dramatically impact our phylogenetic knowledge. Our work reveals that species are often added non-randomly to the phylogeny over multiyear time-scales in a predictable pattern of taxonomic maturation. Our results suggest that we can make informed predictions about how new species will be added across the phylogeny of a given clade, thus providing a framework for accommodating unsampled undescribed species in evolutionary analyses.


2014 ◽  
Vol 23 (2) ◽  
pp. 234 ◽  
Author(s):  
Ellis Q. Margolis

Piñon–juniper (PJ) fire regimes are generally characterised as infrequent high-severity. However, PJ ecosystems vary across a large geographic and bio-climatic range and little is known about one of the principal PJ functional types, PJ savannas. It is logical that (1) grass in PJ savannas could support frequent, low-severity fire and (2) exclusion of frequent fire could explain increased tree density in PJ savannas. To assess these hypotheses I used dendroecological methods to reconstruct fire history and forest structure in a PJ-dominated savanna. Evidence of high-severity fire was not observed. From 112 fire-scarred trees I reconstructed 87 fire years (1547–1899). Mean fire interval was 7.8 years for fires recorded at ≥2 sites. Tree establishment was negatively correlated with fire frequency (r=–0.74) and peak PJ establishment was synchronous with dry (unfavourable) conditions and a regime shift (decline) in fire frequency in the late 1800s. The collapse of the grass-fuelled, frequent, surface fire regime in this PJ savanna was likely the primary driver of current high tree density (mean=881treesha–1) that is >600% of the historical estimate. Variability in bio-climatic conditions likely drive variability in fire regimes across the wide range of PJ ecosystems.


1994 ◽  
Vol 24 (7) ◽  
pp. 1354-1368 ◽  
Author(s):  
Franco Biondi ◽  
Donald E. Myers ◽  
Charles C. Avery

Geostatistics provides tools to model, estimate, map, and eventually predict spatial patterns of tree size and growth. Variogram models and kriged maps were used to study spatial dependence of stem diameter (DBH), basal area (BA), and 10-year periodic basal area increment (BAI) in an old-growth forest stand. Temporal variation of spatial patterns was evaluated by fitting spatial stochastic models at 10-year intervals, from 1920 to 1990. The study area was a naturally seeded stand of southwestern ponderosa pine (Pinusponderosa Dougl. ex Laws. var. scopulorum) where total BA and tree density have steadily increased over the last decades. Our objective was to determine if increased stand density simply reduced individual growth rates or if it also altered spatial interactions among trees. Despite increased crowding, stem size maintained the same type of spatial dependence from 1920 to 1990. An isotropic Gaussian variogram was the model of choice to represent spatial dependence at all times. Stem size was spatially autocorrelated over distances no greater than 30 m, a measure of average patch diameter in this forest ecosystem. Because patch diameter remained constant through time, tree density increased by increasing the number of pine groups, not their horizontal dimension. Spatial dependence of stem size (DBH and BA) was always much greater and decreased less through time than that of stem increment (BAI). Spatial dependence of BAI was close to zero in the most recent decade, indicating that growth rates in 1980–1990 varied regardless of mutual tree position. Increased tree crowding corresponded not only to lower average and variance of individual growth rates, but also to reduced spatial dependence of BAI. Because growth variation was less affected by intertree distance with greater local crowding, prediction of individual growth rates benefits from information on horizontal stand structure only if tree density does not exceed threshold values. Simulation models and area estimates of tree performance in old-growth forests may be improved by including geostatistical components to summarize ecological spatial dependence.


Sign in / Sign up

Export Citation Format

Share Document