COMPARABLE ANALYSIS OF THE INSTRUMENT PARK OF COMMERCIAL ACCOUNTING OF THERMAL ENERGY IN THE URBAN DISTRICT SAMARA

2019 ◽  
Vol 9 (1) ◽  
pp. 25-32
Author(s):  
Vladimir I. NEMCHENKO ◽  
Mikhail V. POSASHKOV ◽  
Oleg K. KRAYNOV ◽  
Alexey A. BODYAGIN ◽  
Dmitry N. ZUBKOV

A comparative metrological analysis of the instrument fl eet of commercial accounting of heat energy and coolant was carried out based on the results of periodic calibration of measuring instruments in 2004 - 2005 and 2016 - 2017. Methods reviewed for assessing the suitability of coolants and their components (fl ow, temperature, pressure transducers) and measuring sets based on them. From the metrological point of view, the obtained results of the analysis make it more reasonable to form a list of recommended metering devices, and they will also be useful in predicting the costs of metrological and routine maintenance of existing heat metering systems.

2020 ◽  
Vol 24 (5 Part B) ◽  
pp. 3059-3068
Author(s):  
Qinghong Wu

The paper uses the flame image processing technology to diagnose the furnace flame combustion achieve the measurement of boiler heat energy. The paper obtains the combustion image of the flame image processing system, and extracts the flame image characteristics of the boiler thermal energy diagnosis, constructs the neural network model of the boiler thermal energy diagnosis, and trains and tests the extracted flame image feature parameter values as the input of the neural network. A rough diagnosis of the boiler?s thermal energy is obtained while predicting the state of combustion. According to the research results, a boiler thermal energy diagnosis system was designed and tested on the boiler of 200 MW unit. The experimental results confirmed the applicability of the system, which can realize on-line monitoring of boiler heat energy and evaluate the combustion situation.


2015 ◽  
Vol 7 (4) ◽  
pp. 461-467 ◽  
Author(s):  
Romanas Savickas ◽  
Lauryna Savickienė ◽  
Juozas Bielskus

Energy consumption in the world increases, so the measures in order to improve energy efficiency must be found. The aim of 2012/27/EU Energy Efficiency Directive targets is to decrease energy consumption for a final energy consumer by 1.5% every year, but there is no definition how these targets could be achieved by an individual member state. This article presents the analysis how these targets could be achieved by the means of individual heat metering by heat cost allocators for every flat thus decreasing an energy consumption for a final consumer. Statistical analysis of identical buildings with individual metering by heat cost allocators and without them is presented. Heat cost allocators do not decrease energy consumption by themselves, so this article presents a technical solution and a set of additional equipment, i.e. thermostatic valves, balance valves, hot water meters and remote data collection system that must be installed. The final results show that the targets of 2012/27/EU Energy Efficiency Directive in Lithuania can be reached, because the buildings with individual heat cost allocators consume about 20–30% less of heat energy. Pasaulyje energijos vartojimas auga, todėl turi būti rastos energetinio efektyvumo pagerinimo priemonės. 2012/27/ES Energijos Efektyvumo Direktyvos tikslas yra sumažinti galutinio energijos vartotojo energijos suvartojimą kasmet po 1,5 %, tačiau nėra nurodyta, kaip kiekviena valstybė narė šiuos tikslus galėtų įgyvendinti. Šis straipsnis pristato analizę, kaip šie tikslai galėtų būti pasiekti, kiekviename bute įrengiant individualios šilumos apskaitos šilumos daliklius, kad sumažėtų energijos vartojimas atskiruose butuose. Pateikta statistinė identiškų pastatų su šilumos dalikliais ir be jų analizė. Šiluminei energijai taupyti neužtenka vien tik šilumos daliklių, todėl straipsnyje pateiktas techninis sprendimas – būtinų įdiegti techninių priemonių paketas, kurį sudaro tokios priemonės: termostatiniai ventiliai, balansiniai ventiliai, karšto vandens skaitikliai, belaidė reguliaraus duomenų nuskaitymo sistema. Galutiniai analizės rezultatai rodo, kad 2012/27/ES Energijos Efektyvumo Direktyvos tikslai Lietuvoje gali būti pasiekti, nes pastatai su individualia šilumos apskaita ir įrengtais šilumos dalikliais vartoja apie 20–30 % mažiau šiluminės energijos nei pastatai be tokios apskaitos.


Author(s):  
A. V. Kiryukhin ◽  
N. B. Zhuravlev

The Paratunsky geothermal field has been in operation since 1964, mostly in a self-flowing mode, with a discharge rate of approximately 250 kg/s of thermal water at temperatures of 70–90°С (47 Mw, with the waste water having a temperature of 35°С). The water drawn from the field is used for local heating, spa heating, and for greeneries in the villages of Paratunsky and Termal’nyi (3000 residents). The potential market of thermal energy in Kamchatka includes Petropavlovsk-Kamchatskii (180000 residents), Elizovo (39 000), and Vilyuchinsk (22 000). The heat consumption in the centralized heating systems for Petropavlovsk-Kamchatskii is 1 623 000 GCal per annum (216 Mw). A thermohydrodynamic model developed previously is used to show that the Paratunsky geothermal reservoir can be operated in a sustainable mode using submersible pumps at an extraction rate of as much as 1375 kg/s, causing a moderate decrease in pressure (by no more than 8 bars) and temperature (by no more than 4°С) in the reservoir. Additional geothermal sources of heat energy may include the Verkhne-Paratunsky and Mutnovsky geothermal fields.


2021 ◽  
Vol 6 ◽  
pp. 4-17
Author(s):  
V.V Koval ◽  
D.V. Miroshnichenko ◽  
O.V. Bogoyavlenska

The article substantiates the importance and problems of determining of such an indicator of the quality of solid fossil fuels, as mechanical strength. The strength of coal depends on a large number of factors (viscosity, brittleness, properties of structural bonds, etc.), the change of which is impossible to take into account. Therefore, the strength of coal in the sample, piece, pack and formation must be represented by some integral index, which inevitably fluctuates around a certain average value and can be determined only approximately. The evaluation of the strength properties of coal should be carried out on the basis of mass tests using statistical methods that allow to calculate the average value and coefficient of variation. Since the strength dispersion is mainly due to the natural inhomogeneity of the coal, the excessive accuracy of the measuring instruments has almost no effect on the statistical characteristics. Laboratory methods of mechanical tests of mine samples, in comparison with full-scale, as a rule, are very accessible and, at qualitative performance of tests, are highly reliable. The properties of coal as an object of enrichment and use are largely related to its physical properties. The physical properties of coal and mineral impurities significantly affect the formation of the main parameters that characterize the particle size distribution and fractional composition, it`s changes during the mining, transportation and enrichment processes. The basic physical and mechanical properties of solid fuels from the point of view of their industrial processing have been listed, the review has been made of the most widespread methods of study of coals mechanical durability and the equipment used for these purposes. The main advantages and disadvantages have been summarized of these methods, as well as their relationship. The factors have been Indicated tinfluencing the mechanical strength of coal. The expediency of using existing methods from the point of view of informativeness for thesphere of its application has been estimated. The methods common in the coal processing industry are considered in more detail. Keywords: coal, solid fuel mining, mechanical strength, determination methods, influencing factors, grinding strength, crushing index. Corresponding author V.V. Koval, e-mail: [email protected]


2011 ◽  
Vol 317-319 ◽  
pp. 2289-2292
Author(s):  
Zheng Ming Tong ◽  
Shu Jun Liang

In recent years, China has focused on the research of energy reuse and environmental protection with lots of manpower and financial capacity. And we have already gotten results on many aspects from transportation to factory production. In this paper, we will think about energy reuse from a new perspective: recovery and reuse of heat energy of human body. This paper researches and analyses the feasibility of thermal energy recovery for the shanghai railway station.


Author(s):  
Thomas R. Amundson ◽  
David B. Scharfe ◽  
Rebecca N. Webb

Latent heat energy storage is one of the most efficient ways to store solar thermal energy. A system capable of receiving, absorbing, and collecting solar energy and storing it within a high temperature phase change material has been designed as part of a power system to be used on a low Earth orbit satellite. The system employs silicon as the phase change material and thermophotovoltaic cells for the conversion of stored heat energy into electrical energy. The effect of a void, in the phase change material, on system temperature and the associated thermophotovoltaic power production is determined through computational evaluation.


2020 ◽  
Vol 190 ◽  
pp. 00032
Author(s):  
Rapha Nichita Kaikatui ◽  
Adik Putra Andika ◽  
Vinsenius Letsoin ◽  
Paulus Mangera ◽  
Damis Hardiantono ◽  
...  

Energy demand increases in line with rapid technological advances. Research on the harvesting of renewable energy continues to be done to make efforts to convert heat energy, which is very abundant in our daily environment. Thermoelectric technology is an alternative source in answering energy needs and can produce energy on a large and small scale. Thermoelectric technology works by converting heat energy into electricity directly, or from electricity to cold. This research presents an experimental study conducted to find out the thermoelectric characteristics of the TEC in the reversal function, with heating and cooling tests on each side of the TEC type thermoelectric element, carried out to obtain the voltage value as the electrical potential generated from this element. The result is thermoelectric potential to generate DC electricity but is very limited in the function of maintaining a heat source on the hot side element. This research then proposes thermal metamaterial that functions as a collector of thermal energy in the method of converting thermal energy into DC electrical energy for the application of low power consumption communication systems.


2018 ◽  
Vol 152 ◽  
pp. 01003
Author(s):  
Chuah Yee Yong ◽  
Mohammad Taghi Hajibeigy ◽  
Chockalingam Aravind Vaithilingam ◽  
Rashmi Gangasa Walvekar

Solar energy is typically collected through photovoltaic (PV) to generate electricity or through thermal collectors as heat energy, they are generally utilised separately. This project is done with the purpose of integrating the two systems to improve the energy efficiency. The idea of this photovoltaic-thermal (PVT) setup design is to simultaneously cool the PV panel so it can operate at a lower temperature thus higher electrical efficiency and also store the thermal energy. The experimental data shows that the PVT setup increased the electrical efficiency of the standard PV setup from 1.64% to 2.15%. The integration of the thermal collector also allowed 37.25% of solar energy to be stored as thermal energy. The standard PV setup harnessed only 1.64% of the solar energy, whereas the PVT setup achieved 39.4%. Different flowrates were tested to determine its effects on the PVT setup’s electrical and thermal efficiency. The various flowrate does not significantly impact the electrical efficiency since it did not significantly impact the cooling of the panel. The various flowrates resulted in fluctuating thermal efficiencies, the relation between the two is inconclusive in this project.


Sign in / Sign up

Export Citation Format

Share Document