scholarly journals ALLELIC STATE OF WX-GENES AND THEIR RELATIONSHIP WITH GRANULOMETRIC STRUCTURE OF GRAIN STARCH IN COLLECTIVE SAMPLES OF WINTER TRITICALE

2021 ◽  
Vol 67 (3) ◽  
Author(s):  
Vasyl STARYCHENKO ◽  
Olha LEVCHENKO ◽  
Yevhenii ZAIKA ◽  
Lubov HOLYK
2020 ◽  
pp. 80-87
Author(s):  
O. Levchenko

The purpose of the study was to identify the collection of winter triticale in the allelic state of the waxi-genes and to identify sources with the presence of waxi-alleles for these genes. The surveys were conducted over 2017–2019 at the NSc Institute of Agriculture. The subject of the research are 43 collection samples of winter triticale, 29 of which are numbers of own breeding, 14 – breeding varieties of the National Institute of Agriculture of NAAS (9) and scientifi c institutions of Poland (1) and the Russian Federation (4). For control, we used soft winter waxy-wheat Sofi yka and wheat with wild of starch Oksana. Field, laboratory (infrared spectrometry, light microscopy, polymerase chain reaction (PCR)) methods, weights and mathematical and statistical methods of research were used to evaluate the collection material. According to the results of molecular genetic analysis of the Wx gene polymorphism in the winter triticale collection samples, it was found that all the tested samples had wild type alleles according to the Wx-B1 gene and were characterized by the absence of the Wx-D1 gene. The Wx-A1 gene revealed samples with both wild-type alleles and presence in the genome of the wax-allele. 8 collections with Wx-A1 gene alleles were selected: selection numbers 141, 153, 201, 223, 229 and varieties Lubomir, Petrol and Poliskii 7. The selected samples varied signifi cantly in terms of such characteristics as grain productivity, weight of 1000 grains, starch content. The tendency to decrease the size of the granules and increase the evenness of the granulometric structure of the starch in the samples with the presence of the wax-allele of the Wx-A1 gene was established. Wx-A1 gene allele samples are valuable starting material for the creation of new winter triticale varieties with increased amylopectin starch suitable for bioethanol processing. Key words: winter triticale, bioethanol, starch, polymerase chain reaction, amylopectin, amylose, allelic state of wax genes, waxi-allele, wild type.


Author(s):  
I.N. Voronchikhina ◽  
◽  
A.G. Marenkova ◽  
V. S. Rubets ◽  
V. V. Pylnev

The results of elements development of varietal agrotechnics of a new high-potential line 238h of winter triticale presented. It was identified that under the conditions of 2020 the most cost effective fertilizer system is an early spring application of NPK (S) (15-15-15 (10)) at a dose of 200kg/ha. The profitability level of this fertilizer was 88,9%.


2009 ◽  
Vol 35 (2) ◽  
pp. 324-333 ◽  
Author(s):  
Peng-Fei CHU ◽  
Zhen-Wen YU ◽  
Xiao-Yan WANG ◽  
Tong-Hua WU ◽  
Xi-Zhi WANG

2018 ◽  
Vol 1 (72) ◽  
pp. 184-189
Author(s):  
Victor Kovtunenko ◽  
◽  
Vladimir Panchenko ◽  
Alexei Kalmus ◽  
◽  
...  
Keyword(s):  

Agriculture ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 512
Author(s):  
Alemayehu Worku ◽  
Tamás Tóth ◽  
Szilvia Orosz ◽  
Hedvig Fébel ◽  
László Kacsala ◽  
...  

The objective of this study was to evaluate the aroma profile, microbial and chemical quality of winter cereals (triticale, oats, barley and wheat) and Italian ryegrass (Lolium multiflorum Lam., IRG) plus winter cereal mixture silages detected with an electronic nose. Four commercial mixtures (mixture A (40% of two cultivars of winter triticale + 30% of two cultivars of winter oats + 20% of winter barley + 10% of winter wheat), mixture B (50% of two cultivars of winter triticale + 40% of winter barley + 10% of winter wheat), mixture C (55% of three types of Italian ryegrass + 45% of two cultivars of winter oat), mixture D (40% of three types of Italian ryegrass + 30% of two cultivars of winter oat + 15% of two cultivars of winter triticale + 10% of winter barley + 5% of winter wheat)) were harvested, wilted and ensiled in laboratory-scale silos (n = 80) without additives. Both the principal component analysis (PCA) score plot for aroma profile and linear discriminant analysis (LDA) classification revealed that mixture D had different aroma profile than other mixture silages. The difference was caused by the presence of high ethanol and LA in mixture D. Ethyl esters such as ethyl 3-methyl pentanoate, 2-methylpropanal, ethyl acetate, isoamyl acetate and ethyl-3-methylthiopropanoate were found at different retention indices in mixture D silage. The low LA and higher mold and yeast count in mixture C silage caused off odour due to the presence of 3-methylbutanoic acid, a simple alcohol with unpleasant camphor-like odor. At the end of 90 days fermentation winter cereal mixture silages (mixture A and B) had similar aroma pattern, and mixture C was also similar to winter cereal silages. However, mixture D had different aromatic pattern than other ensiled mixtures. Mixture C had higher (p < 0.05) mold and yeast (Log10 CFU (colony forming unit)/g) counts compared to mixture B. Mixture B and C had higher acetic acid (AA) content than mixture A and D. The lactic acid (LA) content was higher for mixture B than mixture C. In general, the electronic nose (EN) results revealed that the Italian ryegrass and winter cereal mixtures (mixture D) had better aroma profile as compared to winter cereal mixtures (mixture A and B). However, the cereal mixtures (mixture A and B) had better aroma quality than mixture C silage. Otherwise, the EN technology is suitable in finding off odor compounds of ensiled forages.


1993 ◽  
Vol 39 (4) ◽  
pp. 367-376 ◽  
Author(s):  
T. A. McAllister ◽  
Y. Dong ◽  
L. J. Yanke ◽  
H. D. Bae ◽  
K.-J. Cheng ◽  
...  

The ruminal fungi Orpinomyces joyonii strain 19-2, Neocallimastix patriciarum strain 27, and Piromyces communis strain 22 were examined for their ability to digest cereal starch. All strains digested corn starch more readily than barley or wheat starch. Orpinomyces joyonii 19-2 exhibited the greatest propensity to digest starch in wheat and barley, whereas the digestion of these starches by N. patriciarum 27 and P. communis 22 was limited. Media ammonia concentrations were lower when fungal growth was evident, suggesting that all strains assimilate ammonia. Fungi formed extensive rhizoidal systems on the endosperm of corn, but O. joyonii 19-2 was the only strain to form such systems on the endosperm of wheat and barley. All strains penetrated the protein matrix of corn but did not penetrate starch granules. Starch granules from all three cereals were pitted, evidence of extensive digestion by extracellular amylases produced by O. joyonii 19-2. Similar pitting was observed on the surface of corn starch granules digested by N. patriciarum 27 and P. communis 22, but not on wheat and barley starch granules. The ability of ruminal fungi to digest cereal grains depends on both the strain of fungus and the type of grain. The extent to which fungi digest cereal grain in the rumen remains to be determined.Key words: ruminal fungi, cereal grain, starch digestion, ruminant.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 527
Author(s):  
Andrzej Wysokinski ◽  
Izabela Lozak ◽  
Beata Kuziemska

Atmospheric nitrogen biologically reduced in legumes root nodule and accumulated in their postharvest residues may be of great importance as a source of this macronutrient for succeeding crops. The aim of the study was to determine nitrogen uptake by winter triticale from pea postharvest residues, including N fixed from atmosphere, using in the study fertilizer enriched with the 15N isotope. Triticale was grown without nitrogen fertilization at sites where the forecrops had been two pea cultivars (multi-purpose and field pea) and, for comparison, spring barley. The triticale crop succeeding pea took up more nitrogen from the soil (59.1%) and less from the residues of the forecrop (41.1%). The corresponding values where the forecrop was barley were 92.1% and 7.9%. In the triticale, the percentage of nitrogen derived from the atmosphere, introduced into the soil with pea crop residues amounted to 23.8%. The amounts of nitrogen derived from all sources in the entire biomass of triticale plants grown after harvesting of pea were similar for both pea cultivars. The cereal took up more nitrogen from all sources, when the soil on which the experiment was conducted had higher content of carbon and nitrogen and a greater amount of N was introduced with the pea residues. Nitrogen from pea residues had high availability for winter triticale as a succeeding crop cultivated on sandy soils.


Sign in / Sign up

Export Citation Format

Share Document