scholarly journals Implicit Learning of the Time Interval Sequence

2021 ◽  
Vol 14 (1) ◽  
pp. 108-121
Author(s):  
A.Y. Agafonov ◽  
A.D. Fomicheva ◽  
G. A. Starostin ◽  
A.P. Kryukova

The article considers the studies performed in the «Sequence Learning» paradigm. A special case of this experimental approach is the method of temporal sequences memorization. The elements of such sequences are time intervals instead of stimulus or their spatial localization. The item of the conducted and described study was implicit learning of the time interval sequence. The goal of the experiment was to check the possibility of unconscious acquisition of the temporal sequences, not related to the sequences of another type of organization. To process the obtained results, mixed linear models were used. It was found that the learning of time interval sequences can occur regardless of the presence of regularity in the reaction order (motor sequence) and without rules in stimuli organization (structural sequence) or in the order of their localization (spatial sequence).

2015 ◽  
Vol 54 (1) ◽  
pp. 101-109 ◽  
Author(s):  
Jurgita Židanavičiūtė ◽  
Audrius Vaitkus

The data were collected by researchers at the Road Research Institute, in a study investigating the impact of differentfactors on road surface strength. In this statistical analysis, we apply linear mixed models (LMMs) to clustered longitudinal data, inwhich the units of analysis (points in the road) are nested within clusters (sample of four different road segments), and repeatedmeasures of road strength in these different points are collected over time with unequally spaced time intervals. The data arebalanced – each cluster has the same number of units, which are measured at the same number of time points. Because of correlateddata and different clusters in which data could be correlated, linear regression models are not appropriate here, and therefore linearmixed models are applied.


2015 ◽  
Vol 26 (6) ◽  
pp. 2938-2950
Author(s):  
Chengcheng Hao ◽  
Dietrich von Rosen ◽  
Tatjana von Rosen

This paper aims to develop diagnostic measures to assess the influence of data perturbations on estimates in AB-BA crossover studies with a Poisson distributed response. Generalised mixed linear models with normally distributed random effects are utilised. We show that in this special case, the model can be decomposed into two independent sub-models which allow to derive closed-form expressions to evaluate the changes in the maximum likelihood estimates under several perturbation schemes. The performance of the new influence measures is illustrated by simulation studies and the analysis of a real dataset.


1963 ◽  
Vol 44 (3) ◽  
pp. 475-480 ◽  
Author(s):  
R. Grinberg

ABSTRACT Radiologically thyroidectomized female Swiss mice were injected intraperitoneally with 131I-labeled thyroxine (T4*), and were studied at time intervals of 30 minutes and 4, 28, 48 and 72 hours after injection, 10 mice for each time interval. The organs of the central nervous system and the pituitary glands were chromatographed, and likewise serum from the same animal. The chromatographic studies revealed a compound with the same mobility as 131I-labeled triiodothyronine in the organs of the CNS and in the pituitary gland, but this compound was not present in the serum. In most of the chromatographic studies, the peaks for I, T4 and T3 coincided with those for the standards. In several instances, however, such an exact coincidence was lacking. A tentative explanation for the presence of T3* in the pituitary gland following the injection of T4* is a deiodinating system in the pituitary gland or else the capacity of the pituitary gland to concentrate T3* formed in other organs. The presence of T3* is apparently a characteristic of most of the CNS (brain, midbrain, medulla and spinal cord); but in the case of the optic nerve, the compound is not present under the conditions of this study.


2013 ◽  
Vol 38 (4) ◽  
pp. 624-631
Author(s):  
Chang-You LIU ◽  
Bao-Jie FAN ◽  
Zhi-Min CAO ◽  
Yan WANG ◽  
Zhi-Xiao ZHANG ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1213
Author(s):  
Ahmed Aljanad ◽  
Nadia M. L. Tan ◽  
Vassilios G. Agelidis ◽  
Hussain Shareef

Hourly global solar irradiance (GSR) data are required for sizing, planning, and modeling of solar photovoltaic farms. However, operating and controlling such farms exposed to varying environmental conditions, such as fast passing clouds, necessitates GSR data to be available for very short time intervals. Classical backpropagation neural networks do not perform satisfactorily when predicting parameters within short intervals. This paper proposes a hybrid backpropagation neural networks based on particle swarm optimization. The particle swarm algorithm is used as an optimization algorithm within the backpropagation neural networks to optimize the number of hidden layers and neurons used and its learning rate. The proposed model can be used as a reliable model in predicting changes in the solar irradiance during short time interval in tropical regions such as Malaysia and other regions. Actual global solar irradiance data of 5-s and 1-min intervals, recorded by weather stations, are applied to train and test the proposed algorithm. Moreover, to ensure the adaptability and robustness of the proposed technique, two different cases are evaluated using 1-day and 3-days profiles, for two different time intervals of 1-min and 5-s each. A set of statistical error indices have been introduced to evaluate the performance of the proposed algorithm. From the results obtained, the 3-days profile’s performance evaluation of the BPNN-PSO are 1.7078 of RMSE, 0.7537 of MAE, 0.0292 of MSE, and 31.4348 of MAPE (%), at 5-s time interval, where the obtained results of 1-min interval are 0.6566 of RMSE, 0.2754 of MAE, 0.0043 of MSE, and 1.4732 of MAPE (%). The results revealed that proposed model outperformed the standalone backpropagation neural networks method in predicting global solar irradiance values for extremely short-time intervals. In addition to that, the proposed model exhibited high level of predictability compared to other existing models.


2021 ◽  
pp. 1-6
Author(s):  
Jacob R. Morey ◽  
Xiangnan Zhang ◽  
Kurt A. Yaeger ◽  
Emily Fiano ◽  
Naoum Fares Marayati ◽  
...  

<b><i>Background and Purpose:</i></b> Randomized controlled trials have demonstrated the importance of time to endovascular therapy (EVT) in clinical outcomes in large vessel occlusion (LVO) acute ischemic stroke. Delays to treatment are particularly prevalent when patients require a transfer from hospitals without EVT capability onsite. A computer-aided triage system, Viz LVO, has the potential to streamline workflows. This platform includes an image viewer, a communication system, and an artificial intelligence (AI) algorithm that automatically identifies suspected LVO strokes on CTA imaging and rapidly triggers alerts. We hypothesize that the Viz application will decrease time-to-treatment, leading to improved clinical outcomes. <b><i>Methods:</i></b> A retrospective analysis of a prospectively maintained database was assessed for patients who presented to a stroke center currently utilizing Viz LVO and underwent EVT following transfer for LVO stroke between July 2018 and March 2020. Time intervals and clinical outcomes were compared for 55 patients divided into pre- and post-Viz cohorts. <b><i>Results:</i></b> The median initial door-to-neuroendovascular team (NT) notification time interval was significantly faster (25.0 min [IQR = 12.0] vs. 40.0 min [IQR = 61.0]; <i>p</i> = 0.01) with less variation (<i>p</i> &#x3c; 0.05) following Viz LVO implementation. The median initial door-to-skin puncture time interval was 25 min shorter in the post-Viz cohort, although this was not statistically significant (<i>p</i> = 0.15). <b><i>Conclusions:</i></b> Preliminary results have shown that Viz LVO implementation is associated with earlier, more consistent NT notification times. This application can serve as an early warning system and a failsafe to ensure that no LVO is left behind.


Fluids ◽  
2018 ◽  
Vol 3 (3) ◽  
pp. 63 ◽  
Author(s):  
Thomas Meunier ◽  
Claire Ménesguen ◽  
Xavier Carton ◽  
Sylvie Le Gentil ◽  
Richard Schopp

The stability properties of a vortex lens are studied in the quasi geostrophic (QG) framework using the generalized stability theory. Optimal perturbations are obtained using a tangent linear QG model and its adjoint. Their fine-scale spatial structures are studied in details. Growth rates of optimal perturbations are shown to be extremely sensitive to the time interval of optimization: The most unstable perturbations are found for time intervals of about 3 days, while the growth rates continuously decrease towards the most unstable normal mode, which is reached after about 170 days. The horizontal structure of the optimal perturbations consists of an intense counter-shear spiralling. It is also extremely sensitive to time interval: for short time intervals, the optimal perturbations are made of a broad spectrum of high azimuthal wave numbers. As the time interval increases, only low azimuthal wave numbers are found. The vertical structures of optimal perturbations exhibit strong layering associated with high vertical wave numbers whatever the time interval. However, the latter parameter plays an important role in the width of the vertical spectrum of the perturbation: short time interval perturbations have a narrow vertical spectrum while long time interval perturbations show a broad range of vertical scales. Optimal perturbations were set as initial perturbations of the vortex lens in a fully non linear QG model. It appears that for short time intervals, the perturbations decay after an initial transient growth, while for longer time intervals, the optimal perturbation keeps on growing, quickly leading to a non-linear regime or exciting lower azimuthal modes, consistent with normal mode instability. Very long time intervals simply behave like the most unstable normal mode. The possible impact of optimal perturbations on layering is also discussed.


1990 ◽  
Vol 73 (6) ◽  
pp. 1612-1624 ◽  
Author(s):  
J.L. Foulley ◽  
D. Gianola ◽  
M. San Cristobal ◽  
S. Im

2012 ◽  
Vol 37 (2) ◽  
pp. 251-278 ◽  
Author(s):  
Chieh-Yuan Tsai ◽  
Chih-Jung Chen ◽  
Chun-Ju Chien

Sign in / Sign up

Export Citation Format

Share Document