scholarly journals Design of Manipulator Control System of Forest Picking Robot Based on Fractional Order PID Sliding Mode Control

2021 ◽  
pp. 132-140
Author(s):  
Lei Shi, Miao Dang

This paper studies the control system design of forest picking robot manipulator based on fractional PID sliding mode control. In this paper, the structure characteristics, learning algorithm and application of fractional order PID sliding mode control in manipulator control are analyzed. In this paper, the nonlinear approximation property of fractional order PID sliding mode control is theoretically verified. This paper analyzes the basic structure of picking manipulator system in detail. At the same time, the Lagrange Euler method is used to deduce the dynamic equation of the two degree of freedom series manipulator, and the inertia characteristics, Coriolis force and centripetal force characteristics, heavy torque characteristics are analyzed. The nonlinear system model of manipulator based on S-function is established in MATLAB, and the dynamic model is transformed into the form of second-order differential equation to facilitate the introduction of the designed algorithm.

2012 ◽  
Vol 246-247 ◽  
pp. 842-846
Author(s):  
Rui Tang

Master and slave manipulator has been widely used because it can work easily in the working environment where the human beings can hardly work. In order to make the manipulator control system have good tracking performance, a control strategy based on sliding mode control was proposed for master-slave manipulator control system. Considering that the quality and stability of servo system will be affected by the chattering phenomenon in the SMC, a reaching law approach was used to reduce the chattering phenomenon. The proposed control strategy can make the master and slave manipulator have good performances on force and position tracking, and the chattering problem has also been alleviated. Simulation and experiments results show that the proposed control strategy can produce good performances on the force and position tracking, the problem of chattering has also been inhibited significantly, and the stability and quality of the master and slave manipulator has been improved as well.


CONVERTER ◽  
2021 ◽  
pp. 685-692
Author(s):  
Na Wang, Qinghui Meng, Jie Yang

Industrial manipulator occupies a very important position in industrial production. The tracking control of its control system and joint trajectory has always been a research hotspot. But the manipulator is a multi input multi output system, which has the characteristics of nonlinearity and strong coupling. Radial basis function (RBF) neural network has high nonlinear mapping ability. In this paper, the structure characteristics, learning algorithm and application of RBF neural network in manipulator control are analyzed. In this paper, the nonlinear approximation property of RBF neural network is theoretically verified. This paper analyzes the basic structure of picking manipulator system in detail. At the same time, the Lagrange Euler method is used to deduce the dynamic equation of the two degree of freedom series manipulator, and the inertia characteristics, Coriolis force and centripetal force characteristics, heavy torque characteristics are analyzed. The nonlinear system model of manipulator based on S-function is established in MATLAB, and the dynamic model is transformed into the form of second-order differential equation to facilitate the introduction of the designed algorithm.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2158 ◽  
Author(s):  
Irfan Sami ◽  
Shafaat Ullah ◽  
Zahoor Ali ◽  
Nasim Ullah ◽  
Jong-Suk Ro

The doubly fed induction generator (DFIG)-based wind energy conversion systems (WECSs) are prone to certain uncertainties, nonlinearities, and external disturbances. The maximum power transfer from WECS to the utility grid system requires a high-performance control system in the presence of such nonlinearities and disturbances. This paper presents a nonlinear robust chattering free super twisting fractional order terminal sliding mode control (ST-FOTSMC) strategy for both the grid side and rotor side converters of 2 MW DFIG-WECS. The Lyapunov stability theory was used to ensure the stability of the proposed closed-loop control system. The performance of the proposed control paradigm is validated using extensive numerical simulations carried out in MATLAB/Simulink environment. A detailed comparative analysis of the proposed strategy is presented with the benchmark sliding mode control (SMC) and fractional order terminal sliding mode control (FOTSMC) strategies. The proposed control scheme was found to exhibit superior performance to both the stated strategies under normal mode of operation as well as under lumped parametric uncertainties.


2020 ◽  
Vol 7 (4) ◽  
pp. 649-658
Author(s):  
Nasim Ullah

Standalone DC micro-grid requires highly efficient power converters with high performance robust controllers. This research work deals with the hardware implementation of a load side buck converter and its control system integrated in a DC micro-grid system. This paper presents a novel fractional order sliding mode control (FSMC) method for voltage regulation of a buck converter feeding a constant power load. FSMC controller is derived based on the average state space model of the buck converter and its stability is verified using Lyapunov theorem. Finally, the FSMC controller is implemented using Arduino mega 2560 processor and the obtained results are compared with classical sliding mode control (SMC), proportional, integral, derivative (PID) control and fractional order PID control system (FOPID under constant and variable resistive loading.


Author(s):  
Majid Parvizian ◽  
Khosro Khandani

This article proposes a new [Formula: see text] sliding mode control strategy for stabilizing controller design for fractional-order Markovian jump systems. The suggested approach is based on the diffusive representation of fractional-order Markovian jump systems which transforms the fractional-order system into an integer-order one. Using a new Lyapunov–Krasovskii functional, the problem of [Formula: see text] sliding mode control of uncertain fractional-order Markovian jump systems with exogenous noise is investigated. We propose a sliding surface and prove its reachability. Moreover, the linear matrix inequality conditions for stochastic stability of the resultant sliding motion with a given [Formula: see text] disturbance attenuation level are derived. Eventually, the theoretical results are verified through a simulation example.


2021 ◽  
pp. 002029402110211
Author(s):  
Tao Chen ◽  
Damin Cao ◽  
Jiaxin Yuan ◽  
Hui Yang

This paper proposes an observer-based adaptive neural network backstepping sliding mode controller to ensure the stability of switched fractional order strict-feedback nonlinear systems in the presence of arbitrary switchings and unmeasured states. To avoid “explosion of complexity” and obtain fractional derivatives for virtual control functions continuously, the fractional order dynamic surface control (DSC) technology is introduced into the controller. An observer is used for states estimation of the fractional order systems. The sliding mode control technology is introduced to enhance robustness. The unknown nonlinear functions and uncertain disturbances are approximated by the radial basis function neural networks (RBFNNs). The stability of system is ensured by the constructed Lyapunov functions. The fractional adaptive laws are proposed to update uncertain parameters. The proposed controller can ensure convergence of the tracking error and all the states remain bounded in the closed-loop systems. Lastly, the feasibility of the proposed control method is proved by giving two examples.


2014 ◽  
Vol 971-973 ◽  
pp. 714-717 ◽  
Author(s):  
Xiang Shi ◽  
Zhe Xu ◽  
Qing Yi He ◽  
Ka Tian

To control wheeled inverted pendulum is a good way to test all kinds of theories of control. The control law is designed, and it based on the collaborative simulation of MATLAB and ADAMS is used to control wheeled inverted pendulum. Then, with own design of hardware and software of control system, sliding mode control is used to wheeled inverted pendulum, and the experimental results of it indicate short adjusting time, the small overshoot and high performance.


Sign in / Sign up

Export Citation Format

Share Document