Sliding Mode Control Scheme for Tele-Operation Manipulator

2012 ◽  
Vol 246-247 ◽  
pp. 842-846
Author(s):  
Rui Tang

Master and slave manipulator has been widely used because it can work easily in the working environment where the human beings can hardly work. In order to make the manipulator control system have good tracking performance, a control strategy based on sliding mode control was proposed for master-slave manipulator control system. Considering that the quality and stability of servo system will be affected by the chattering phenomenon in the SMC, a reaching law approach was used to reduce the chattering phenomenon. The proposed control strategy can make the master and slave manipulator have good performances on force and position tracking, and the chattering problem has also been alleviated. Simulation and experiments results show that the proposed control strategy can produce good performances on the force and position tracking, the problem of chattering has also been inhibited significantly, and the stability and quality of the master and slave manipulator has been improved as well.

Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 188
Author(s):  
Hao Huang ◽  
Qunzhang Tu ◽  
Ming Pan ◽  
Chenming Jiang ◽  
Jinhong Xue

A fast terminal sliding mode control is proposed in this paper for improving the dynamic performance and robustness of a permanent magnet in-wheel motor system driven by a voltage source inverter. Firstly, a fast terminal sliding mode approaching law was designed to accelerate the approaching rate of the control system. Then, a torque load observer was designed to compensate for disturbances and uncertainties. Finally, fuzzy rules were designed to suppress the chattering phenomenon. Simulation and experimental results demonstrated that the fast terminal sliding mode control strategy presented better response speed than the conventional sliding mode control strategy. It had better dynamic performance and anti-interference and effectively reduced the chattering phenomenon in the control process.


2017 ◽  
Vol 13 (05) ◽  
pp. 97
Author(s):  
Wenfang Zheng ◽  
Jincui Liu

The purpose of this study is to solve defects of the existing control strategy long convergence time, sliding mode chattering and so on. For Sensorless Brushless DC motor control strategy, a modified extended Kalman state correction estimation scheme is proposed, and dual mode high-order non-singular terminal hybrid sliding mode control technology is put forward. TMS320F2812DSP core controller and CM200DY-12H inverter module and construction electric car core control module are established, and the program algorithm of the extended Kalman algorithm and hybrid sliding mode control is constructed. The results showed that the control system designed can suppress the system chattering, and the system has strong robustness, which has low requirement on the system model and can eliminate external disturbance input, showing outstanding performance in the convergence time and anti disturbance performance. In summary, a dual mode high-order non-singular terminal hybrid sliding mode control technology put forward is quite suitable for electric vehicle control system.


2021 ◽  
pp. 132-140
Author(s):  
Lei Shi, Miao Dang

This paper studies the control system design of forest picking robot manipulator based on fractional PID sliding mode control. In this paper, the structure characteristics, learning algorithm and application of fractional order PID sliding mode control in manipulator control are analyzed. In this paper, the nonlinear approximation property of fractional order PID sliding mode control is theoretically verified. This paper analyzes the basic structure of picking manipulator system in detail. At the same time, the Lagrange Euler method is used to deduce the dynamic equation of the two degree of freedom series manipulator, and the inertia characteristics, Coriolis force and centripetal force characteristics, heavy torque characteristics are analyzed. The nonlinear system model of manipulator based on S-function is established in MATLAB, and the dynamic model is transformed into the form of second-order differential equation to facilitate the introduction of the designed algorithm.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xin Zhang ◽  
Wenbo Xu ◽  
Wenru Lu

This study aimed to improve the position tracking accuracy of the single joint of the manipulator when the manipulator model information is uncertain. The study is based on the theory of fractional calculus, radial basis function (RBF) neural network control, and iterative sliding mode control, and the RBF neural network fractional-order iterative sliding mode control strategy is proposed. First, the stability analysis of the proposed control strategy is carried out through the Lyapunov function. Second, taking the two-joint manipulator as an example, simulation comparison and analysis are carried out with iterative sliding mode control strategy, fractional-order iterative sliding mode reaching law control strategy, and fractional-order iterative sliding mode surface control strategy. Finally, through simulation experiments, the results show that the RBF neural network fractional-order iterative sliding mode control strategy can effectively improve the joints’ tracking and control accuracy, reduce the position tracking error, and effectively suppress the chattering caused by the sliding mode control. It is proved that the proposed control strategy can ensure high-precision position tracking when the information of the manipulator model is uncertain.


2021 ◽  
Author(s):  
Huanhuan Ren ◽  
Lizhong Zhang ◽  
Chengzhi Su

Abstract This paper presents the position tracking performance of the robot system with uncertainties and external disturbances by using super twisting sliding mode control (STSMC) with fractional order (FO) sliding surface. In this scheme, fractional calculus theory is applied to the design of the sliding surface of STSMC, which can reduce the chattering caused by the switch control action and ensure that the control system has strong robust characteristics and fast convergence. Based on Lyapunov stability theory, the controller ensures the existence of sliding mode of sliding surface in finite time. Moreover, an adaptive STSMC reaching law is adopted. By using the fractional order nonlinear switching manifold and adaptive reaching law, the control performance can be obtained more effectively in sliding mode phase and the reaching phase, respectively. Finally, in order to validate the effectiveness and robustness of the proposed control strategy, the linear PID control strategy and the classical STSMC strategy are designed for comparative analysis, and the numerical calculation is carried out according to the dynamic model to study the position tracking accuracy of the robot under uncertainty and external interference.


Sign in / Sign up

Export Citation Format

Share Document