scholarly journals Ecological Efficiency of Life Cycle of Concrete Fabricated Composite Slab in Earthquake Area

2021 ◽  
pp. 189-196
Author(s):  
Huang Bo, Yu Pei

With the development of prefabricated buildings, the construction mode of buildings has changed greatly. Infilled wall is an important part of architecture. The traditional manual masonry method is not suitable for the construction of prefabricated buildings. Precast concrete infilled wall, as a form of infilled wall suitable for the construction of prefabricated buildings, came into being. Infilled wall has a great influence on the performance of frame structure. Compared with the traditional masonry infilled wall, the concrete infilled wall has greater stiffness, better integrity and stronger bearing capacity. Based on the existing research, this paper analyzes the influence of the height width ratio of the concrete infilled wall, the wall thickness, and the tie mode with the frame on the structural performance through the finite element software Atena. Combined with the results of practical engineering modal analysis, this paper evaluates the value method of natural vibration period of concrete frame infilled wall structure, and puts forward some suggestions for Chinese codes.

2013 ◽  
Vol 368-370 ◽  
pp. 1043-1047
Author(s):  
Yin Zhang ◽  
You Han ◽  
Shuai Liang

Ecological composite wall as ecological composite wall structure of the main stress components, the seismic performance is ecological composite wall structure seismic performance evaluation system of the main content. Based on the grey system theory, the grey correlation analysis to the key parameters (the mouth of the cave, frame structure, height to width ratio) change ecological composite wall test results are analyzed, the key parameters on the ecological composite wall the influence law of seismic performance, for choosing wall structure design method to provide basis.


2018 ◽  
Vol 8 (10) ◽  
pp. 1871 ◽  
Author(s):  
Xueyuan Yan ◽  
Suguo Wang ◽  
Canling Huang ◽  
Ai Qi ◽  
Chao Hong

Precast monolithic structures are increasingly applied in construction. Such a structure has a performance somewhere between that of a pure precast structure and that of a cast-in-place structure. A precast concrete frame structure is one of the most common prefabricated structural systems. The post-pouring joint is important for controlling the seismic performance of the entire precast monolithic frame structure. This paper investigated the joints of a precast prestressed concrete frame structure. A reversed cyclic loading test was carried out on two precast prestressed concrete beam–column joints that were fabricated with two different concrete strengths in the keyway area. This testing was also performed on a cast-in-place reinforced concrete joint for comparison. The phenomena such as joint crack development, yielding, and ultimate damage were observed, and the seismic performance of the proposed precast prestressed concrete joint was determined. The results showed that the precast prestressed concrete joint and the cast-in-place joint had a similar failure mode. The stiffness, bearing capacity, ductility, and energy dissipation were comparable. The hysteresis curves were full and showed that the joints had good energy dissipation. The presence of prestressing tendons limited the development of cracks in the precast beams. The concrete strength of the keyway area had little effect on the seismic performance of the precast prestressed concrete joints. The precast prestressed concrete joints had a seismic performance that was comparable to the equivalent monolithic system.


2012 ◽  
Vol 193-194 ◽  
pp. 1109-1112
Author(s):  
Li Ming Wu ◽  
Xiao Liang Luo ◽  
Zi Jian Wang

Taking a 5-story reinforced concrete frame structure on the transformed 3-layer steel frames for an example, use finite element software ANSYS to reformation as a whole building model under static wind load changes for comparative analysis of internal force and displacement of the corresponding node. Analysis results show that in the transformation of steel on reinforced concrete frame structure, should fully take into account the structural stiffness change on construction of the overall effect of wind resistance, so that the transformation of the steel concrete frame structure more reasonable.


2012 ◽  
Vol 568 ◽  
pp. 3-6
Author(s):  
Ke Wei Ding ◽  
Xiang Zhang

As construction industrialization is springing up in our country, precast concrete frame structure,as a result,has been developing rapidly. Based on a host of articles about precast concrete frame structure system at home and abroad,it,in this paper,summarized and prospected the latest stress performance research of precast concrete frame structure and up-to-date engineering application. Further more, total assembled node and seismic behavior of precast concrete frame structure is also pointed out as what is needed to study in the future.


2018 ◽  
Vol 6 (3) ◽  
pp. 1-6
Author(s):  
Bruno Dal Lago ◽  
Francesco Foti ◽  
Luca Martinelli

The strong earthquakes occurred in Southern Europe in the last decade pointed out a poor seismic performance of the connection system of the cladding of precast industrial structures. The cladding of these buildings usually consists of sandwich concrete panels of remarkable mass, connected to the frame structure with mechanical devices. The estimation of the out-of-plane seismic action on these connections is a key step for their correct proportioning. However, the formulation currently provided in the Eurocode 8 for the estimation of the seismic action on non-structural elements was calibrated with different objectives. Furthermore, given there is no in-plane structure-panel interaction, a quote of the panel mass is lumped in correspondence of their connection for a correct proportioning of the frame structure. The designers need to make assumptions on both aspects that often bring to remarkably different solutions. The paper presents a consistent dynamic formulation of the problem of the vibration of rigid bodies connected with cantilever columns. The solution brings to closed-form equations to evaluate the exact out-of-plane action on the connections and the correct amount of panel mass to be lumped.


2014 ◽  
Vol 1065-1069 ◽  
pp. 1245-1248
Author(s):  
Zhuo Jun Zeng ◽  
Jun Ping Wang ◽  
Yan Xiang Li

This article analysis stairs effect on steel frame structure under seismic loading by using the finite element software MIDAS Gen. Detailed analyzing impact of stairs on the self-vibration period, period ratio, the story drift and other design indexes in designing of the impact under seismic loading. Analysis shows that stairs have great effects on the design index of steel frame structure. Therefore the stair effect must be considered in analysis of structure design and modeling.


2014 ◽  
Vol 1008-1009 ◽  
pp. 1246-1249
Author(s):  
Lin Hai Zhang ◽  
Fu Ma

In this paper, with a high-intensity reinforced concrete frame structure as the prototype, the calculation of isolated structures is through mature finite element software or MIDAS / Gen to calculate and analyze the five structure models of the 8 degrees Area established as the original five-layer structure model. The results show that the use of steel or reinforced concrete in floor will increase the structural seismic response with the interlaminar shear and interlaminar displacement increase. And storey isolation structure’s acceleration response is significantly less than that of the non-isolated structure.


2019 ◽  
Vol 200 ◽  
pp. 109719 ◽  
Author(s):  
Yun Zhou ◽  
Taiping Chen ◽  
Yilin Pei ◽  
Hyeon-Jong Hwang ◽  
Xiang Hu ◽  
...  

Author(s):  
Tian Lida ◽  
Li Liming ◽  
Liu Kang ◽  
Geng Jiao ◽  
Li Ming

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Xuansheng Cheng ◽  
Chuansheng Jia ◽  
Yue Zhang

The damping ratio of an added-story frame structure is established based on complex damping theory to determine the structure seismic response. The viscous dampers are selected and arranged through target function method. A significant damping effect is obtained when a small velocity index is selected. The seismic responses of a five-floor reinforced concrete frame structure with directly added light steel layers and light steel layers with viscous dampers are compared with the finite element software SAP2000. Calculation results show that, after adding the layers, the structure becomes flexible and the shear in the bottom layer decreases. However, the interlaminar shear of the other layers increases. The seismic response of the added layers is very significant and exhibits obvious whiplash effect. The interstory displacement angles of some layers do not meet the requirements. The seismic response of the structure decreases after the adoption of viscous dampers; thereby seismic requirements are satisfied.


Sign in / Sign up

Export Citation Format

Share Document