scholarly journals Malaria Prediction Model Using Machine Learning Algorithms

2021 ◽  
Vol 12 (10) ◽  
pp. 7488-7496
Author(s):  
Yusuf Aliyu Adamu, Et. al.

Measures have been taking to ensure the safety of individuals from the burden of vector-borne disease but it remains the causative agent of death than any other diseases in Africa. Many human lives are lost particularly of children below five years regardless of the efforts made. The effect of malaria is much more challenging mostly in developing countries. In 2019, 51% of malaria fatality happen in Africa which it increased by 20% in 2020 due to the covid-19 pandemic. The majority of African countries lack a proper or a sound health care system, proper environmental settlement, economic hardship, limited funding in the health sector, and absence of good policies to ensure the safety of individuals. Information has to become available to the peoples on the effect of malaria by making public awareness program to make sure people become acquainted with the disease so that certain measure can be maintained. The prediction model can help the policymakers to know more about the expected time of the malaria occurrence based on the existing features so that people will get to know the information regarding the disease on time, health equipment and medication to be made available by government through it policy. In this research weather condition, non-climatic features, and malaria cases are considered in designing the model for prediction purposes and also the performance of six different machine learning classifiers for instance Support Vector Machine, K-Nearest Neighbour, Random Forest, Decision Tree, Logistic Regression, and Naïve Bayes is identified and found that Random Forest is the best with accuracy (97.72%), AUC (98%) AUC, and (100%) precision based on the data set used in the analysis.  

Recycling ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 65
Author(s):  
Ali Hewiagh ◽  
Kannan Ramakrishnan ◽  
Timothy Tzen Vun Yap ◽  
Ching Seong Tan

Online frauds have pernicious impacts on different system domains, including waste management systems. Fraudsters illegally obtain rewards for their recycling activities or avoid penalties for those who are required to recycle their own waste. Although some approaches have been introduced to prevent such fraudulent activities, the fraudsters continuously seek new ways to commit illegal actions. Machine learning technology has shown significant and impressive results in identifying new online fraud patterns in different system domains such as e-commerce, insurance, and banking. The purpose of this paper, therefore, is to analyze a waste management system and develop a machine learning model to detect fraud in the system. The intended system allows consumers, individuals, and organizations to track, monitor, and update their performance in their recycling activities. The data set provided by a waste management organization is used for the analysis and the model training. This data set contains transactions of users’ recycling activities and behaviors. Three machine learning algorithms, random forest, support vector machine, and multi-layer perceptron are used in the experiments and the best detection model is selected based on the model’s performance. Results show that each of these algorithms can be used for fraud detection in waste managements with high accuracy. The random forest algorithm produces the optimal model with an accuracy of 96.33%, F1-score of 95.20%, and ROC of 98.92%.


2021 ◽  
Author(s):  
Aayushi Rathore ◽  
Anu Saini ◽  
Navjot Kaur ◽  
Aparna Singh ◽  
Ojasvi Dutta ◽  
...  

ABSTRACTSepsis is a severe infectious disease with high mortality, and it occurs when chemicals released in the bloodstream to fight an infection trigger inflammation throughout the body and it can cause a cascade of changes that damage multiple organ systems, leading them to fail, even resulting in death. In order to reduce the possibility of sepsis or infection antiseptics are used and process is known as antisepsis. Antiseptic peptides (ASPs) show properties similar to antigram-negative peptides, antigram-positive peptides and many more. Machine learning algorithms are useful in screening and identification of therapeutic peptides and thus provide initial filters or built confidence before using time consuming and laborious experimental approaches. In this study, various machine learning algorithms like Support Vector Machine (SVM), Random Forest (RF), K-Nearest Neighbour (KNN) and Logistic Regression (LR) were evaluated for prediction of ASPs. Moreover, the characteristics physicochemical features of ASPs were also explored to use them in machine learning. Both manual and automatic feature selection methodology was employed to achieve best performance of machine learning algorithms. A 5-fold cross validation and independent data set validation proved RF as the best model for prediction of ASPs. Our RF model showed an accuracy of 97%, Matthew’s Correlation Coefficient (MCC) of 0.93, which are indication of a robust and good model. To our knowledge this is the first attempt to build a machine learning classifier for prediction of ASPs.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261433
Author(s):  
Hantai Kim ◽  
JaeYeon Park ◽  
Yun-Hoon Choung ◽  
Jeong Hun Jang ◽  
JeongGil Ko

Diagnostic tests for hearing impairment not only determines the presence (or absence) of hearing loss, but also evaluates its degree and type, and provides physicians with essential data for future treatment and rehabilitation. Therefore, accurately measuring hearing loss conditions is very important for proper patient understanding and treatment. In current-day practice, to quantify the level of hearing loss, physicians exploit specialized test scores such as the pure-tone audiometry (PTA) thresholds and speech discrimination scores (SDS) as quantitative metrics in examining a patient’s auditory function. However, given that these metrics can be easily affected by various human factors, which includes intentional (or accidental) patient intervention, there are needs to cross validate the accuracy of each metric. By understanding a “normal” relationship between the SDS and PTA, physicians can reveal the need for re-testing, additional testing in different dimensions, and also potential malingering cases. For this purpose, in this work, we propose a prediction model for estimating the SDS of a patient by using PTA thresholds via a Random Forest-based machine learning approach to overcome the limitations of the conventional statistical (or even manual) methods. For designing and evaluating the Random Forest-based prediction model, we collected a large-scale dataset from 12,697 subjects, and report a SDS level prediction accuracy of 95.05% and 96.64% for the left and right ears, respectively. We also present comparisons with other widely-used machine learning algorithms (e.g., Support Vector Machine, Multi-layer Perceptron) to show the effectiveness of our proposed Random Forest-based approach. Results obtained from this study provides implications and potential feasibility in providing a practically-applicable screening tool for identifying patient-intended malingering in hearing loss-related tests.


2020 ◽  
Vol 12 (5) ◽  
pp. 41-51
Author(s):  
Shaimaa Mahmoud ◽  
◽  
Mahmoud Hussein ◽  
Arabi Keshk

Opinion mining in social networks data is considered as one of most important research areas because a large number of users interact with different topics on it. This paper discusses the problem of predicting future products rate according to users’ comments. Researchers interacted with this problem by using machine learning algorithms (e.g. Logistic Regression, Random Forest Regression, Support Vector Regression, Simple Linear Regression, Multiple Linear Regression, Polynomial Regression and Decision Tree). However, the accuracy of these techniques still needs to be improved. In this study, we introduce an approach for predicting future products rate using LR, RFR, and SVR. Our data set consists of tweets and its rate from 1:5. The main goal of our approach is improving the prediction accuracy about existing techniques. SVR can predict future product rate with a Mean Squared Error (MSE) of 0.4122, Linear Regression model predict with a Mean Squared Error of 0.4986 and Random Forest Regression can predict with a Mean Squared Error of 0.4770. This is better than the existing approaches accuracy.


2021 ◽  
Vol 309 ◽  
pp. 01043
Author(s):  
L. Chandrika ◽  
K. Madhavi

Cardiovascular Diseases (CVDs) are the primary cause for the sudden death in the world today from the past few years the disease has emerged greatly as a most unpredictable problem, not only in India the whole planet facing the criticality. So, there is a desperate need of valid, accurate and practical solution or application to diagnose the CVD problems in time for mandatory treatment. Predicting the CVD is a great challenge in the health care domain of clinical data analysis. Machine learning Algorithms (MLA) and Techniques has been vastly developed and proven to be effective and efficient in predicting the problems using the past data. Using these MLA techniques and taking the clinical dataset which provided by the healthcare industry. Different studies were takes place and tried only a small part into predicting CVD with ML Algorithms. In this thesis, we propose the different novel methodology which concentrates at finding appropriate features by using MLA techniques resulting at finding out the accurate model to predict CVD. In this prediction model we are trying to implement the models with different combinations of features and several known classification techniques such as Deep Learning, Random Forest, Generalised Linear Model, Naïve Bayes, Logistic Regression, Decision Tree, Gradient Boosted trees, Support Vector Machine, Vote and HRFLM and we have got an higher accuracy level and of 75.8%, 85.1%, 82.9%, 87.4%, 85%, 86.1%, 78.3%, 86.1%, 87.41%, and 88.4% through the prediction model for heart disease with the hybrid random forest with a linear model (HRFLM).


Background/Aim: Breast Cancer is the most often identified cancer among women and major reason for increasing mortality rate among women. The early strategies for estimating the breast cancer sicknesses helped in settling on choices about the progressions to have happened in high-chance patients which brought about the decrease of their dangers. Methods: In the proposed research, we have considered breast cancer data set from kaggle and we have done pre-processing tasks for missing values .We have no missing data values from the considered data set .The performance of the diagnosis model is obtained by using methods like classification, accuracy, sensitivity and specificity analysis. This paper proposes a prediction model to predict whether a people have a breast cancer disease or not and to provide an awareness or diagnosis on that. This is done by comparing the accuracies of applying rules to the individual results of Support Vector Machine, Random forest, Naive Bayes classifier and logistic regression on the dataset taken in a region to present an accurate model of predicting breast cancer disease. Results: The machine learning algorithms under study were able to predict breast cancer disease in patients with accuracy between 52.63% and 98.24%. Conclusions: It was shown that Random Forest has better Accuracy (98.24 %) when compared to different Machine-learning Algorithms.


Author(s):  
Soroor Karimi ◽  
Bohan Xu ◽  
Alireza Asgharpour ◽  
Siamack A. Shirazi ◽  
Sandip Sen

Abstract AI approaches include machine learning algorithms in which models are trained from existing data to predict the behavior of the system for previously unseen cases. Recent studies at the Erosion/Corrosion Research Center (E/CRC) have shown that these methods can be quite effective in predicting erosion. However, these methods are not widely used in the engineering industries due to the lack of work and information in this area. Moreover, in most of the available literature, the reported models and results have not been rigorously tested. This fact suggests that these models cannot be fully trusted for the applications for which they are trained. Therefore, in this study three machine learning models, including Elastic Net, Random Forest and Support Vector Machine (SVM), are utilized to increase the confidence in these tools. First, these models are trained with a training data set. Next, the model hyper-parameters are optimized by using nested cross validation. Finally, the results are verified with a test data set. This process is repeated several times to assure the accuracy of the results. In order to be able to predict the erosion under different conditions with these three models, six main variables are considered in the training data set. These variables include material hardness, pipe diameter, particle size, liquid viscosity, liquid superficial velocity, and gas superficial velocity. All three studied models show good prediction performances. The Random Forest and SVM approaches, however, show slightly better results compared to Elastic Net. The performance of these models is compared to both CFD erosion simulation results and also to Sand Production Pipe Saver (SPPS) results, a mechanistic erosion prediction software developed at the E/CRC. The comparison shows SVM prediction has a better match with both CFD and SPPS. The application of AI model to determine the uncertainty of calculated erosion is also discussed.


2021 ◽  
Vol 6 (2) ◽  
pp. 213
Author(s):  
Nadya Intan Mustika ◽  
Bagus Nenda ◽  
Dona Ramadhan

This study aims to implement a machine learning algorithm in detecting fraud based on historical data set in a retail consumer financing company. The outcome of machine learning is used as samples for the fraud detection team. Data analysis is performed through data processing, feature selection, hold-on methods, and accuracy testing. There are five machine learning methods applied in this study: Logistic Regression, K-Nearest Neighbor (KNN), Decision Tree, Random Forest, and Support Vector Machine (SVM). Historical data are divided into two groups: training data and test data. The results show that the Random Forest algorithm has the highest accuracy with a training score of 0.994999 and a test score of 0.745437. This means that the Random Forest algorithm is the most accurate method for detecting fraud. Further research is suggested to add more predictor variables to increase the accuracy value and apply this method to different financial institutions and different industries.


Sentiment analysis is deals with the classification of sentiments expressed in a particular document. The analysis of user generated data by using sentiment analysis is very useful for knowing the opinion of a crowd. This paper is mainly aimed to tackle the problem of polarity categorization of sentiment analysis. A Detailed description of the sentiment analysis process is also given. Product review data set from UCI repository is used for analysis. This paper is giving a comparative analysis of four supervised machine learning algorithms namely Naive Bayes, Support Vector Machine, Decision Tree and Random Forest which are used for product review analysis. The result shows that, Random Forest classification algorithm provides better accuracy than other three algorithms


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3532 ◽  
Author(s):  
Nicola Mansbridge ◽  
Jurgen Mitsch ◽  
Nicola Bollard ◽  
Keith Ellis ◽  
Giuliana Miguel-Pacheco ◽  
...  

Grazing and ruminating are the most important behaviours for ruminants, as they spend most of their daily time budget performing these. Continuous surveillance of eating behaviour is an important means for monitoring ruminant health, productivity and welfare. However, surveillance performed by human operators is prone to human variance, time-consuming and costly, especially on animals kept at pasture or free-ranging. The use of sensors to automatically acquire data, and software to classify and identify behaviours, offers significant potential in addressing such issues. In this work, data collected from sheep by means of an accelerometer/gyroscope sensor attached to the ear and collar, sampled at 16 Hz, were used to develop classifiers for grazing and ruminating behaviour using various machine learning algorithms: random forest (RF), support vector machine (SVM), k nearest neighbour (kNN) and adaptive boosting (Adaboost). Multiple features extracted from the signals were ranked on their importance for classification. Several performance indicators were considered when comparing classifiers as a function of algorithm used, sensor localisation and number of used features. Random forest yielded the highest overall accuracies: 92% for collar and 91% for ear. Gyroscope-based features were shown to have the greatest relative importance for eating behaviours. The optimum number of feature characteristics to be incorporated into the model was 39, from both ear and collar data. The findings suggest that one can successfully classify eating behaviours in sheep with very high accuracy; this could be used to develop a device for automatic monitoring of feed intake in the sheep sector to monitor health and welfare.


Sign in / Sign up

Export Citation Format

Share Document