scholarly journals Experimental Evalutionof Tensile Strenght of Cryogenically Solidified Aluminium Based Metal Matrix Composites (MMC)

Author(s):  
Kuwarmausam, Et. al.

Present technology demanded high strength lightweight material which offers good mechanical property and light in weight. Metal matrix composite is one popular type of such material. In this research authors, aluminum is reinforced to increase its properties like hardness, strength, elastic stiffness to suits the needs to design. Aluminum of grade LM13, which is light material reinforced with boron carbide to improves mechanical properties like strength hardness and elastic properties. In this paper author experimentally evaluate the mechanical properties of Aluminium LM13. The weight percentage of boron carbide by varying with a range of 5%, 10%, 15%, and 20%. An improved property of MMC makes them useful in different areas like aerospace and automotive industries. The microstructure of developed material has been reported in this paper.

Author(s):  
Paramjit Singh

Abstract: Aluminum alloy’s widely employed in transportation applications like: aerospace, aviation, marine and automobile sector due to their good mechanical properties, wear properties, corrosion behavior and high strength to density ratio. The current review article mainly highlights the effects of various reinforcements on mechanical and tribological properties of aluminum based metal matrix composite materials and focuses on the types of different reinforcements. Review revealed that, there is significant improvement in mechanical properties of AMMC’s with different reinforcements as compared to traditional base alloys. The reinforcements may be SiC, TiO2 , Al2O3 , fly ash, B4C, fiber, Zircon are incorporated in the stir casting or other methods. Keywords: AMMC, Reinforcements, Mechanical properties, Stir casting etc.


2014 ◽  
Vol 58 ◽  
pp. 332-338 ◽  
Author(s):  
B. Vijaya Ramnath ◽  
C. Elanchezhian ◽  
M. Jaivignesh ◽  
S. Rajesh ◽  
C. Parswajinan ◽  
...  

2016 ◽  
Vol 704 ◽  
pp. 400-405 ◽  
Author(s):  
Cristina Arévalo ◽  
Michael Kitzmantel ◽  
Erich Neubauer ◽  
Isabel Montealegre-Meléndez

Titanium and its alloys have evolved faster than any structural material in the history of metallurgy. The increasing employment of titanium in many different applications is mainly due to its light weight, high strength and structural efficiency. The titanium metal matrix composites (Ti-MMCs) have helped to achieve these objectives. The aim of this work is the development and study of Ti-MMCs manufactured via hot pressing at 900 °C reinforced by sub-micron and micron boron carbide (B4C), amorphous boron and sub-micron and micron titanium diboride (TiB2) particles in order to improve its mechanical properties. Full dense composites were obtained with this consolidation technique. The influence of the different reinforcements has been analyzed. Moreover, the strengthening effect of sub-micron reinforcements is compared to the effect of the material with the same chemical composition in a micro-scaled phase. Comparison has been established studying the microstructure (grain size and density) and mechanical properties through tensile and hardness tests.


2015 ◽  
Vol 813-814 ◽  
pp. 230-234 ◽  
Author(s):  
T.S.A. Suryakumari ◽  
S. Ranganathan ◽  
P. Shankar

The present investigation involves studying the mechanical properties of the fabricated aluminium 7075 hybrid metal matrix composites reinforced with various weight % of SiC and Al2 O3 particulates by stir casting method. The Al 7075 hybrid metal matrix composites specimen were fabricated using L9 orthogonal array. The mechanical properties like Brinell Harness (BHN), Rockwell Hardness (HRC) and impact loads were experimented. The mechanical properties like hardness and impact loads have improved with the increase in weight percentage of SiC and Al2O3 particulates in the hybrid aluminium matrix.


China Foundry ◽  
2018 ◽  
Vol 15 (6) ◽  
pp. 449-456 ◽  
Author(s):  
Balasubramani Subramaniam ◽  
Balaji Natarajan ◽  
Balasubramanian Kaliyaperumal ◽  
Samson Jerold Samuel Chelladurai

2015 ◽  
Vol 813-814 ◽  
pp. 208-212
Author(s):  
S. Ghanaraja ◽  
K.L. Vinuth Kumar ◽  
K.S. Ravikumar ◽  
B.M. Madhusudan

The Synthesis of aluminium matrix composites is receiving considerable emphasis in meeting the requirements of various industries. Due to the desired properties such as low weight, high specific strength, good corrosion resistance and excellent wear resistance, they have received a great interest in the recent years. Metal-matrix composites (MMCs) based on aluminium and magnesium has emerged as an important class of materials and Al2O3can be considered as ideal reinforcements, due to their high strength, high aspect ratio and thermo-mechanical properties. The objective of this work is to reinforce Al 1100-Mg alloy with different wt% of Al2O3(0, 3, 6, 9 and 12) was added by melt stirring method and Extrusion is carried out (extrusion ratio of 12.25) for the same alloy and composites. Mechanical property like hardness and tensile properties have been investigated for cast and extruded of base alloy and composites.


2015 ◽  
Vol 813-814 ◽  
pp. 116-120
Author(s):  
K.S. Arun ◽  
T. Panneerselvam ◽  
S. Raghuraman

Now a day’s Hybrid Metal Matrix composites has a large number of applications in automobiles, aircrafts and structural applications like brake rotors, engine parts and cylinder liners. The aim of this study is to determine the mechanical properties of boron carbide (B4C) and zirconium silicate (ZrSiO4) particulate reinforced with AA6063 alloy composites. In this experimental study, B4C and ZrSiO4 particulates reinforced with AA6063 composites were manufactured by stir casting technique. Mechanical properties of these composite materials were investigated by different weight percentages, 3%, 6%, 9% of boron carbide (B4C) and 9%, 6%, 3% of zirconium silicate (ZrSiO4) respectively. The mechanical properties evaluation reveals variations in hardness and the tensile strength values with the composite combinations investigated in this work. From the experimental studies, the optimum volume fraction of hybrid reinforcement in AA6063 alloy on the basis of mechanical properties and SEM analysis is also determined.


2015 ◽  
Vol 1119 ◽  
pp. 234-238 ◽  
Author(s):  
Meena Laad ◽  
Vijaykumar S. Jatti ◽  
Satyendra Yadav

The excellent mechanical properties of Aluminium Metal Matrix Composites find applications in a variety of engineering applications in the automotive, aerospace and heavy machinery industries. This study aims at synthesis and characterization of Al 64430 reinforced with SiC particles and Rice Husk Ash (RHA). Rice husk ash is an agricultural waste which is produced in millions of tons worldwide. Aluminium was used as the base metal. With liquid metallurgy technique the metal matrix composites were prepared. The MMCs were synthesized with 3 % weight percentage RHA in Al metal matrix and the mechanical properties such as hardness, tensile strength and structural properties of MMCs were studied. The microstructure of the synthesized composites was examined by optical emission microscope and XRD. The Vicker’s microhardness test was performed on the composite specimens from base of the cast. The synthesized MMCs were found to have increased tensile strength, hardness, increased ultimate strength. The density of MMCs was observed to be decreased. This study indicates that RHA can be used as reinforcement material to synthesize light weight composites with increased hardness, tensile strength, Young’s modulus for various industrial applications.


2014 ◽  
Vol 592-594 ◽  
pp. 705-710 ◽  
Author(s):  
S. Dhanalakshmi ◽  
N Mohanasundararaju ◽  
P.G. Venkatakrishnan

A hybrid Al7075 metal matrix composites have been fabricated through liquid metallurgy route (Stir Casting method) using Al2O3 and B4C as reinforcement materials. The effect of weight percentage of reinforcement materials on mechanical properties of the composites have been studied by varying the weight percentage of Al2O3 as 3, 6, 9, 12 and 15% while keeping constant weight percentage of B4C (3%). The as-cast microstructure, tensile strength, micro and macro hardness of the fabricated hybrid composites have been studied. The mechanical properties of the prepared composites were increased with increasing the weight percentage of the reinforcement in the composite. The maximum tensile strength, micro-hardness and macro-hardness of 309 MPa, 140 VHN, and 112 BHN, respectively, were obtained for a hybrid Al7075 matrix composite containing 15% Al2O3 and 3% B4C.


Sign in / Sign up

Export Citation Format

Share Document