scholarly journals Impact of density and special features of manufacturing process on drying of autoclaved aerated concrete masonry blocks

Author(s):  
Sanita Rubene ◽  
Martins Vilnitis ◽  
Juris Noviks

Autoclaved aerated concrete (AAC) masonry blocks are construction material with high heat insulation parameters. In time of sustainable construction, this material can be used as a load bearing construction material for a range of buildings where it is necessary to obtain high heat insulation parameters of external delimiting constructions. The main problem of autoclaved aerated masonry constructions is the significant influence of relative humidity rate and its gradient on heat resistivity properties of the masonry constructions. Therefore it is important to monitor the drying process of AAC masonry constructions in order to avoid the sealing of moisture inside the masonry by early application of finishing layers on the construction. As there is a variety of manufacturers who offer AAC masonry blocks and the manufacturing process of the blocks slightly differ as well as the ingredients used for the manufacturing of the blocks this research has been done to determine the impact of manufacturing features and density of the blocks on their drying properties. The testing has been performed by non-destructive testing method – electrical impedance spectrometry (EIS) In the paper, there are included results of research of correlation between EIS and moisture content rate in masonry blocks provided by different manufacturers. All used blocks are with similar material density. As a result of the research correlation formulas between saturation rate of the material and EIS measurement result have been established and a graph of humidity migration throughout the cross section of the masonry construction has been determined.

2019 ◽  
Vol 974 ◽  
pp. 665-671
Author(s):  
Omar Ismael Alhashimi ◽  
AL-Hasnawi Yasser Sami Ghareb

Many of the complex reinforced Autoclaved Aerated Concrete characteristics under shear and flexure are yet to be identified to employ this material advantageously and economically, as it has many advantages of low weight, fire resistance, acoustic and thermal insulation. It is observed in the article that under two-points loading system, diagonal cracks are usually the first cracks to be observed in the deep beam clear span. The diagonal cracks first are developed in relatively deep beams and the flexural cracks are first developed in shallower beam. The principal mode of failure in the deep beams having adequate reinforcement is diagonal tension cracking. The shear failure is a common type for all beams. This indicates a weak the bond strength between lightweight concrete and reinforcing steel. There are many factors affecting the bond strength between the lightweight concrete and reinforcing steel, where the compressive strength plays an important role in bond strength, and the bond strength is increased by increasing the compressive strength. The AAC beams have the potential to be an excellently energy-saving construction material and is believed to emerge as an alternative to traditional reinforced concrete beam in the near future. This is proved by the experimental analysis.


2018 ◽  
Vol 276 ◽  
pp. 148-153
Author(s):  
Matěj Lédl ◽  
Lucie Galvánková ◽  
Rostislav Drochytka

After introducing SNCR in coal combustion process in power plants, the valuable by-product such as fly ash remains contaminated with amount of ammonia in form of NH4HSO4, (NH4)2SO4 respectively, which became undesirable in AAC technology because the toxic ammonia is released in the air during the mixing process. This paper deals with the effect of varying ammonia content in fly ash after selective non-catalytic reduction (SNCR) on the physical-mechanical properties of the fly ash based autoclaved aerated concrete (AAC) with the main focus on determination of the impact of the various content of ammonium ion in fly ash on the initial consistency of fresh slurry, the residual content of ammonium ion in hardened aerated matrix and also the impact on the bulk density, compressive strength and tobermorite formation after hydrothermal treatment. Seven batches of AAC, made out of fly ash with rising content of ammonium ion from 0 ppm to 250 ppm, were tested and based on the results obtained it was found out that ammonia is released during the mixing process entirely and doesn‘t remain in AAC after autoclaving, moreover it doesn‘t affect the properties of both fresh slurry (no apparent foaming effect noticed) and thermally treated samples of AAC. Formation of tobermorite wasn’t negatively affected.


2021 ◽  
Vol 1203 (2) ◽  
pp. 022060
Author(s):  
Pinar Usta ◽  
Başak Zengin

Abstract Reinforced Aerated Concrete panel building systems are preferred as wall elements in residences and industrial facilities due to their advantages. The signal issue encountered in industrial facilities is caused by fires that occur. Fire resistance of sustainably reinforced aerated concrete panels was investigated. The wall G3/05 class reinforced panel model to be used for the test was preferred. The panel wall has been subjected to a 120-minute fire resistance test. In this process, 1050 C° temperature was measured on the surface exposed to flames, while the wall temperature was read 50 C° on the other surface, and the heat temperature increased to 70 C° only at the panel joints. The data obtained from showed that the reinforced aerated concrete panels maintain their integrity under fire and resistant to high temperatures. These data that reinforced aerated concrete systems should be preferred, in buildings with human population and high fire risk.


2014 ◽  
Vol 1000 ◽  
pp. 174-177 ◽  
Author(s):  
Ondřej Koutný ◽  
Tomáš Opravil ◽  
Jaromír Pořízka

In these days, autoclaved aerated concrete research points to the utilization of alternative raw materials such as metakaoline. An effort is made to improve the mechanical and related heat-insulation properties of the products without significant change of present technology and price. This work studies the effect of metakaoline, as an alternative raw material to Portland cement, on final properties of autoclaved aerated concrete, especially the effect on the volume weight and compressive strength. Quantitative and qualitative mineralogical composition, especially the presence and the amount of Tobermorite and Xonotlite were observed by XRD and TG-DTA-EGA methods.


Buildings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 610
Author(s):  
Chang-Seon Shon ◽  
Inzhu Mukangali ◽  
Dichuan Zhang ◽  
Anuar Ulykbanov ◽  
Jong Kim

Autoclaved aerated concrete (AAC) is commonly used as a modern, energy-efficient construction material in Nur-Sultan, Kazakhstan—the second-coldest national capital in the world after Ulaanbaatar, Mongolia. The autoclave curing method used to manufacture the AAC has potential risks and is environmentally costly because of its high-pressure and -temperature operation. Therefore, for phase I and II studies, non-autoclaved aerated concrete (NAAC) was cast, and its properties were evaluated in terms of compressive strength, density, porosity, and thermal conductivity. Moreover, the thermal conductivity prediction model of NAAC was successfully developed. In this Phase III study, the energy behavior of the NAAC was evaluated by energy simulation for a typical two-story residential house model in Kazakhstan. Different wall materials, such as fired brick and normal concrete, were adapted to compare the energy performance of NAAC. Finally, the annual heat loss and amount of heat transferred through the wall of the house were calculated to cross-check the energy-saving effect of NAAC. It was found that the NAAC conserved energy, because the heating and cooling loads, annual heat loss, and amount of heat transfer of NACC were lower than those of fired brick and normal concrete.


Sign in / Sign up

Export Citation Format

Share Document