scholarly journals Detailed 3D Fault Representations for the 2019 Ridgecrest, California, Earthquake Sequence

2020 ◽  
Vol 110 (4) ◽  
pp. 1818-1831 ◽  
Author(s):  
Andreas Plesch ◽  
John H. Shaw ◽  
Zachary E. Ross ◽  
Egill Hauksson

ABSTRACT We present new 3D source fault representations for the 2019 M 6.4 and M 7.1 Ridgecrest earthquake sequence. These representations are based on relocated hypocenter catalogs expanded by template matching and focal mechanisms for M 4 and larger events. Following the approach of Riesner et al. (2017), we generate reproducible 3D fault geometries by integrating hypocenter, nodal plane, and surface rupture trace constraints. We used the southwest–northeast-striking nodal plane of the 4 July 2019 M 6.4 event to constrain the initial representation of the southern Little Lake fault (SLLF), both in terms of location and orientation. The eastern Little Lake fault (ELLF) was constrained by the 5 July 2019 M 7.1 hypocenter and nodal planes of M 4 and larger aftershocks aligned with the main trend of the fault. The approach follows a defined workflow that assigns weights to a variety of geometric constraints. These main constraints have a high weight relative to that of individual hypocenters, ensuring that small aftershocks are applied as weaker constraints. The resulting fault planes can be considered averages of the hypocentral locations respecting nodal plane orientations. For the final representation we added detailed, field-mapped rupture traces as strong constraints. The resulting fault representations are generally smooth but nonplanar and dip steeply. The SLLF and ELLF intersect at nearly right angles and cross on another. The ELLF representation is truncated at the Airport Lake fault to the north and the Garlock fault to the south, consistent with the aftershock pattern. The terminations of the SLLF representation are controlled by aftershock distribution. These new 3D fault representations are available as triangulated surface representations, and are being added to a Community Fault Model (CFM; Plesch et al., 2007, 2019; Nicholson et al., 2019) for wider use and to derived products such as a CFM trace map and viewer (Su et al., 2019).

2020 ◽  
Author(s):  
Yifan Yin ◽  
Stefan Wiemer ◽  
Edi Kissling ◽  
Federica Lanza ◽  
Bill Fry

<p>Crustal earthquakes in low deform rate regions are rare in the human life span but bear heavy losses when occurring. Limited observations also hinter robust earthquake forecasts. In this study, we use a high-resolution catalog to investigate the triggering of the 2010-2011 Canterbury earthquake sequence, New Zealand. The seismic sequence occurred in the North Canterbury Plains, a low-stress, low-seismicity region relatively close to active plate boundaries where large earthquakes are frequent, such as the 2009 M<sub>W</sub> 7.8 Dusky Sound Earthquake. To map the post-seismic stress transfers of remote large events acting in the region, we calculate the temporal and spatial seismic rate changes in the crust from 2005 to the 2010 Mw 7.1 Darfield Earthquake, the first mainshock of the Canterbury sequence. We use template matching analysis to obtain a new high-resolution seismic catalog that includes events previously undetected by routine network monitoring. Detection quality is further established through the usage of a Support Vector Machine classifier. Using the new catalog, we observe a seismic quiescence on the North Canterbury Plain between Dusky Sound Earthquake and the Darfield Earthquake. The quiescence is accompanied by a reduced rate in micro-seismicity, suggesting a lowered b-value in the region primed for the Canterbury sequence. The lack of proof of dynamic or static triggering suggests that complex fault interactions lead to the onset of the Darfield Earthquake.</p>


1995 ◽  
Vol 85 (3) ◽  
pp. 705-715
Author(s):  
Mark Andrew Tinker ◽  
Susan L. Beck

Abstract Regional distance surface waves are used to study the source parameters for moderate-size aftershocks of the 25 April 1992 Petrolia earthquake sequence. The Cascadia subduction zone had been relatively seismically inactive until the onset of the mainshock (Ms = 7.1). This underthrusting event establishes that the southern end of the North America-Gorda plate boundary is seismogenic. It was followed by two separate and distinct large aftershocks (Ms = 6.6 for both) occurring at 07:41 and 11:41 on 26 April, as well as thousands of other small aftershocks. Many of the aftershocks following the second large aftershock had magnitudes in the range of 4.0 to 5.5. Using intermediate-period surface-wave spectra, we estimate focal mechanisms and depths for one foreshock and six of the larger aftershocks (Md = 4.0 to 5.5). These seven events can be separated into two groups based on temporal, spatial, and principal stress orientation characteristics. Within two days of the mainshock, four aftershocks (Md = 4 to 5) occurred within 4 hr of each other that were located offshore and along the Mendocino fault. These four aftershocks comprise one group. They are shallow, thrust events with northeast-trending P axes. We interpret these aftershocks to represent internal compression within the North American accretionary prism as a result of Gorda plate subduction. The other three events compose the second group. The shallow, strike-slip mechanism determined for the 8 March foreshock (Md = 5.3) may reflect the right-lateral strike-slip motion associated with the interaction between the northern terminus of the San Andreas fault system and the eastern terminus of the Mendocino fault. The 10 May aftershock (Md = 4.1), located on the coast and north of the Mendocino triple junction, has a thrust fault focal mechanism. This event is shallow and probably occurred within the accretionary wedge on an imbricate thrust. A normal fault focal mechanism is obtained for the 5 June aftershock (Md = 4.8), located offshore and just north of the Mendocino fault. This event exhibits a large component of normal motion, representing internal failure within a rebounding accretionary wedge. These two aftershocks and the foreshock have dissimilar locations in space and time, but they do share a north-northwest oriented P axis.


2021 ◽  
Author(s):  
Cedric Twardzik ◽  
Mathilde Vergnolle ◽  
Anthony Sladen ◽  
Louisa L. H. Tsang

Abstract. It is well-established that the post-seismic slip results from the combined contribution of seismic slip and aseismic slip. However, the partitioning between these two modes of slip remains unclear due to the difficulty to infer detailed and robust descriptions of how both evolve in space and time. This is particularly true just after a mainshock when both processes are expected to be the strongest. Using state-of-the-art sub-daily processing of GNSS data, along with dense catalogs of aftershocks obtained from template-matching techniques, we unravel the spatiotemporal evolution of post-seismic slip and aftershocks over the first 12 hours following the 2015 Mw8.3 Illapel, Chile, earthquake. We show that the very early post-seismic activity occurs over two regions with distinct behaviors. To the north, post-seismic slip appears to be purely aseismic and precedes the occurrence of late aftershocks. To the south, aftershocks are the primary cause of the post-seismic slip. We suggest that this difference in behavior could be inferred only few hours after the mainshock, and thus could contribute to a more data-driven forecasts of long-term aftershocks.


2020 ◽  
Vol 110 (4) ◽  
pp. 1603-1626 ◽  
Author(s):  
Kang Wang ◽  
Douglas S. Dreger ◽  
Elisa Tinti ◽  
Roland Bürgmann ◽  
Taka’aki Taira

ABSTRACT The 2019 Ridgecrest earthquake sequence culminated in the largest seismic event in California since the 1999 Mw 7.1 Hector Mine earthquake. Here, we combine geodetic and seismic data to study the rupture process of both the 4 July Mw 6.4 foreshock and the 6 July Mw 7.1 mainshock. The results show that the Mw 6.4 foreshock rupture started on a northwest-striking right-lateral fault, and then continued on a southwest-striking fault with mainly left-lateral slip. Although most moment release during the Mw 6.4 foreshock was along the southwest-striking fault, slip on the northwest-striking fault seems to have played a more important role in triggering the Mw 7.1 mainshock that happened ∼34  hr later. Rupture of the Mw 7.1 mainshock was characterized by dominantly right-lateral slip on a series of overall northwest-striking fault strands, including the one that had already been activated during the nucleation of the Mw 6.4 foreshock. The maximum slip of the 2019 Ridgecrest earthquake was ∼5  m, located at a depth range of 3–8 km near the Mw 7.1 epicenter, corresponding to a shallow slip deficit of ∼20%–30%. Both the foreshock and mainshock had a relatively low-rupture velocity of ∼2  km/s, which is possibly related to the geometric complexity and immaturity of the eastern California shear zone faults. The 2019 Ridgecrest earthquake produced significant stress perturbations on nearby fault networks, especially along the Garlock fault segment immediately southwest of the 2019 Ridgecrest rupture, in which the coulomb stress increase was up to ∼0.5  MPa. Despite the good coverage of both geodetic and seismic observations, published coseismic slip models of the 2019 Ridgecrest earthquake sequence show large variations, which highlight the uncertainty of routinely performed earthquake rupture inversions and their interpretation for underlying rupture processes.


2020 ◽  
Vol 91 (4) ◽  
pp. 1971-1978 ◽  
Author(s):  
David R. Shelly

Abstract I use template matching and precise relative relocation techniques to develop a high-resolution earthquake catalog for the initial portion of the 2019 Ridgecrest earthquake sequence, from 4 to 16 July, encompassing the foreshock sequence and the first 10+ days of aftershocks following the Mw 7.1 mainshock. Using 13,525 routinely cataloged events as waveform templates, I detect and precisely locate a total of 34,091 events. Precisely located earthquakes reveal numerous crosscutting fault structures with dominantly perpendicular southwest and northwest strikes. Foreshocks of the Mw 6.4 event appear to align on a northwest-striking fault. Aftershocks of the Mw 6.4 event suggest that it further ruptured this northwest-striking fault, as well as the southwest-striking fault where surface rupture was observed. Finally, aftershocks of the Mw 7.1 show a highly complex distribution, illuminating a primary northwest-striking fault zone consistent with surface rupture but also numerous crosscutting southwest-striking faults. Aftershock relocations suggest that the Mw 7.1 event ruptured adjacent to the previous northwest-striking rupture of the Mw 6.4, perhaps activating a subparallel structure southwest of the earlier rupture. Both the northwest and southeast rupture termini of the Mw 7.1 rupture exhibited multiple fault branching, with particularly high rates of aftershocks and multiple fault orientations in the dilatational quadrant northeast of the northwest rupture terminus.


2020 ◽  
Author(s):  
Sara Carena ◽  
Alessandro Verdecchia ◽  
Alessandro Valentini ◽  
Bruno Pace

<p>The 2019 M 6.4 Searles Valley and the M 7.1 Ridgecrest earthquakes occurred in the Eastern California Shear Zone (ECSZ) between the southern tip of the Owens Valley fault and the central segment of the Garlock fault. This earthquake sequence, as shown by recent studies based on cumulative (coseismic plus postseismic) Coulomb stress (ΔCFS) modeling, is likely to have been influenced by previous earthquakes in the ECSZ, reinforcing the hypothesis that the spatial and temporal distribution of major earthquakes in this region is controlled by the location and timing of past events. In turn, the 2019 Ridgecrest sequence has likely reshaped the state of stress on neighbouring faults, and as a consequence modified the probability of occurrence of future events in the region.</p><p>Here, focusing on the Garlock fault, we calculate the cumulative ΔCFS due to several major (M ≥ 7) earthquakes which occurred in the ECSZ and surrounding areas (e.g. San Andreas fault) following the most recent event on the Garlock fault (A.D. 1450-1640), and up to and including the Ridgecrest sequence. We then use these results to evaluate the influence of stress changes due to past earthquakes on a probabilistic seismic hazard model for the Garlock fault.</p><p>In our first probabilistic model, we calculate BPT (Brownian Passage Time) curves of occurrence of a M ≥ 7 event on the central segment of the Garlock fault in the next 30 years, using recurrence time and coefficient of variation values calculated from paeloseismological data. Preliminary results show a probability of occurrence in 30 years of up to 10% when we do not consider the effect of ΔCFS. This increases to about 15% when ΔCFS effects are introduced in the model.</p><p>As a next step, we will implement a more complex segmented model for the Garlock fault, where probability calculations take into account multiple possible rupture combinations.</p>


2022 ◽  
Vol 964 (1) ◽  
pp. 012001
Author(s):  
Nguyen Thong ◽  
Ho Tuan Duc ◽  
Phan Quang Hung ◽  
Tran Hai Yen

Abstract The area of Cua-Dai estuary and the coastal areas of Hoi-An City have experienced complicated erosion and sedimentation in recent years. Along the coast of Hoi-An, erosion often occurs, whereas in the area of Cua-Dai River, there is an accretion phenomenon that obstructs the waterway navigation from Cua-Dai to Cu-Lao-Cham. Occurrence of sand dunes in the offshore location of Cua-Dai has been recorded at a number of times in recent years. Studying the process of bed morphological change due to the sediment transport in the Thu-Bon river and the influence of monsoons in the area allows to explain the above phenomenon thus an in-depth study to propose appropriate solutions. This study used the numerical model Telemac which combines the hydro-morphodynamic and wave modules. The simulation results show that the main trend of coastal currents caused by tides and waves tends to go southward, leading to coastal erosion especially in the northeast monsoon season as well as sedimentation in the estuarine area. In addition, the model also shows the crucial role of waves in shoreline erosion, with the degree of erosion in the north coast near Cua-Dai being more severe than the southern coast, through the formation of local eddy flow on the north coast.


2013 ◽  
Vol 726-731 ◽  
pp. 3123-3127
Author(s):  
Ba Teer Wu ◽  
Er Gen Gao ◽  
Ye Wu

The paper is utilizes the double difference method of to relocate the north and south earthquake belt's Ludian earthquake sequence to obtained the Ludian earthquake sequence's detailed earthquake parameters. And at the same time we have established an whole set of perfect method in data processing and result analysising. Have the ability of useing'the north and south earthquake belt earthquake to strengthen the monitor's real time data to accuratly relocate the medium intensity earthquake sequenc of the north and south belt. Thus,we could produce the more accurate earthquake parameter, and short provides a more conclusive evidence into the warning area division and earthquake forecast.


Sign in / Sign up

Export Citation Format

Share Document