scholarly journals Development of a Stem Cell Therapy for Glaucoma

2015 ◽  
Vol 8 (1) ◽  
pp. 52
Author(s):  
Marianne Doorenbos ◽  
Lu Shi-Jiang ◽  
Dong Feng Chen ◽  
◽  
◽  
...  

Glaucoma is the most common form of optic neuropathy and a major cause of blindness worldwide. Currently, there is no cure for glaucoma. Damage to retinal ganglion cells and optic nerve caused by the diseases is permanent. Stem cells, which can divide indefinitely and differentiate into various cell types, offer a great premise for cell-replacement therapy. Recent breakthroughs in stem cell research that enable generation of pluripotent stem cells from adult somatic cells by reprogramming technology have opened new therapeutic possibilities. However, besides the common factors in inducing directed and homogenous cell differentiation and integration into the host tissue and establishing functionality, stem cell therapy for glaucoma is especially challenged by difficulties in driving optic nerve regeneration or repair. On the contrary, stem cell transplantation may still gain functional benefits by secreting neurotrophic factors and promoting neural plasticity. This review will discuss these advances and challenges in stem cell therapy.

2020 ◽  
pp. 1-2
Author(s):  
Shantha A R

Stem cells are the building blocks of life. They have remarkable potential to regenerate and develop into many different cell types in the body during early life and growth. They are also a class of undifferentiated cells that are able to be differentiated into specialized cells types. Stem cells are characterized by certain features such as totipotency, pluripotency, multipotency, oligopotent and unipotency. The history of stem cell research had an embryonic beginning in the mid 1800s with the discovery that few cells could generate other cells. In the 1900s the first stem cells were discovered when it was found that cells generate blood cells. Nowadays, stem cell therapy is under research and till now, a very few stem cell therapies have been regarded as safe and successful. It is also found that stem cell therapy cast a number of side effects too. The cost of the procedure too is expensive and is not easily affordable.


2020 ◽  
Vol 10 (14) ◽  
pp. 4852 ◽  
Author(s):  
Shima Masoudi Asil ◽  
Jyoti Ahlawat ◽  
Gileydis Guillama Barroso ◽  
Mahesh Narayan

In addition to adverse health outcomes, neurological disorders have serious societal and economic impacts on patients, their family and society as a whole. There is no definite treatment for these disorders, and current available drugs only slow down the progression of the disease. In recent years, application of stem cells has been widely advanced due to their potential of self-renewal and differentiation to different cell types which make them suitable candidates for cell therapy. In particular, this approach offers great opportunities for the treatment of neurodegenerative disorders. However, some major issues related to stem-cell therapy, including their tumorigenicity, viability, safety, metastases, uncontrolled differentiation and possible immune response have limited their application in clinical scales. To address these challenges, a combination of stem-cell therapy with nanotechnology can be a solution. Nanotechnology has the potential of improvement of stem-cell therapy by providing ideal substrates for large scale proliferation of stem cells. Application of nanomaterial in stem-cell culture will be also beneficial to modulation of stem-cell differentiation using nanomedicines. Nanodelivery of functional compounds can enhance the efficiency of neuron therapy by stem cells and development of nanobased techniques for real-time, accurate and long-lasting imaging of stem-cell cycle processes. However, these novel techniques need to be investigated to optimize their efficiency in treatment of neurologic diseases.


2021 ◽  
Author(s):  
Wonjae Lee ◽  
Zhonlin Lyu ◽  
Jon Park ◽  
Kwang-Min Kim ◽  
Hye-jin Jin ◽  
...  

Abstract Stem cell therapy is emerging as a promising treatment option to restore a neurological function after ischemic stroke. Despite the growing number of candidate stem cell types, each with unique characteristics, there is a lack of experimental platform to systematically evaluate their neurorestorative potential. When stem cells are transplanted into ischemic brain, the therapeutic efficacy primarily depends on the response of the neurovascular unit (NVU) to these extraneous cells. In this work, we developed an ischemic stroke microphysiological system (MPS) with a functional NVU on a microfluidic chip. Our new chip design facilitated the incorporated cells to form a functional blood-brain barrier (BBB) and restore their in vivo-like behaviors in both healthy and ischemic conditions. We utilized this MPS to track the transplanted stem cells and characterize their neurorestorative behaviors reflected in gene expression levels. Each type of stem cells showed unique neurorestorative effects, primarily through supporting the endogenous recovery, rather than through direct cell replacement. And the recovery of synaptic activities, critical for neurological function, was more tightly correlated with the recovery of the structural and functional integrity in NVU, rather than with the regeneration of neurons itself.


2017 ◽  
Vol 1 (1) ◽  
pp. 17
Author(s):  
Siska Damayanti ◽  
Rina Triana ◽  
Angliana Chouw ◽  
Nurrani Mustika Dewi

Introduction: Each cell in human body is assigned with a specialized function to perform.  Before a cell becomes specialized, it is a stem cell. Stem cell research and therapy is progressing dramatically these days. Stem cell therapy holds enormous treatment potential for many diseases which currently have no or limited therapeutic options. Unfortunately, this potential also comes with side-effects. In this review, the positive and negative effects of regulation of stem cells will be explained.Content: Stem cells are undifferentiated cells that have potential to develop into many different cell types in the body during early life and growth. The type of stem cells are embryonic stem cells, induced pluripotent stem cells, somatic stem cells, foetal stem cells and mesenchymal stem cells. Stem cell transplantation is one form of stem cell therapy, it comes with different sources, and those are autologous and allogenic transplantation stem cells. In an autologous transplant, a patient’s own blood-forming stem cells are collected, meanwhile in an allogeneic transplant, a person’s stem cells are replaced with new stem cells obtained from a donor or from donated umbilical cord blood.Summary: Its abilities to maintain undifferentiated phenotype, self-renewing and differentiate itself into specialized cells, give rise to stem cell as a new innovation for the treatment of various diseases. In the clinical setting, stem cells are being explored in various conditions, such as in tissue repair and regeneration and autoimmune diseases therapy. But along with its benefit, stem cell therapy also holds some harm. It is known that the treatment using stem cell for curing and rehabilitation has the risk in tumor formation.


Nano LIFE ◽  
2019 ◽  
Vol 09 (03) ◽  
pp. 1941002
Author(s):  
Yanbin Fu ◽  
Zhiying He ◽  
Chao Zhang

Stem cell therapy is being developed as a promising novel strategy for the treatment of heart-associated diseases. Several types of cells such as skeletal myoblasts, bone marrow (BM) mesenchymal stem cells (MSCs), endothelial progenitor cells (EPCs), adipose stem cells (ADSCs), cardiac progenitor cells (CPCs), induced pluripotent stem cells (iPSCs) have been tested in pre-clinical and clinical cardiac repairing models. Fibroblasts, as terminally differentiated cells, could also be trans-differentiated into cardiomyocytes in vitro. In this review, we will summarize the recent advances of cell types, potential applications and challenges of stem cell therapy in the treatment of heart failure.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yu-Ting Zhang ◽  
Kai-Jie He ◽  
Jin-Bao Zhang ◽  
Quan-Hong Ma ◽  
Fen Wang ◽  
...  

AbstractStem cells are characterized by their self-renewal and multipotency and have great potential in the therapy of various disorders. However, the blood–brain barrier (BBB) limits the application of stem cells in the therapy of neurological disorders, especially in a noninvasive way. It has been shown that small molecular substances, macromolecular proteins, and even stem cells can bypass the BBB and reach the brain parenchyma following intranasal administration. Here, we review the possible brain-entry routes of transnasal treatment, the cell types, and diseases involved in intranasal stem cell therapy, and discuss its advantages and disadvantages in the treatment of central nervous system diseases, to provide a reference for the application of intranasal stem cell therapy.


2018 ◽  
Vol 48 (6) ◽  
pp. 2607-2655 ◽  
Author(s):  
Paula Müller ◽  
Heiko Lemcke ◽  
Robert David

A large number of clinical trials have shown stem cell therapy to be a promising therapeutic approach for the treatment of cardiovascular diseases. Since the first transplantation into human patients, several stem cell types have been applied in this field, including bone marrow derived stem cells, cardiac progenitors as well as embryonic stem cells and their derivatives. However, results obtained from clinical studies are inconsistent and stem cell-based improvement of heart performance and cardiac remodeling was found to be quite limited. In order to optimize stem cell efficiency, it is crucial to elucidate the underlying mechanisms mediating the beneficial effects of stem cell transplantation. Based on these mechanisms, researchers have developed different improvement strategies to boost the potency of stem cell repair and to generate the “next generation” of stem cell therapeutics. Moreover, since cardiovascular diseases are complex disorders including several disease patterns and pathologic mechanisms it may be difficult to provide a uniform therapeutic intervention for all subgroups of patients. Therefore, future strategies should aim at more personalized SC therapies in which individual disease parameters influence the selection of optimal cell type, dosage and delivery approach.


Author(s):  
Guoyang Zhou ◽  
Yongjie Wang ◽  
Shiqi Gao ◽  
Xiongjie Fu ◽  
Yang Cao ◽  
...  

Ischemic stroke (IS) remains one of the major causes of death and disability due to the limited ability of central nervous system cells to regenerate and differentiate. Although several advances have been made in stroke therapies in the last decades, there are only a few approaches available to improve IS outcome. In the acute phase of IS, mechanical thrombectomy and the administration of tissue plasminogen activator have been widely used, while aspirin or clopidogrel represents the main therapy used in the subacute or chronic phase. However, in most cases, stroke patients fail to achieve satisfactory functional recovery under the treatments mentioned above. Recently, cell therapy, especially stem cell therapy, has been considered as a novel and potential therapeutic strategy to improve stroke outcome through mechanisms, including cell differentiation, cell replacement, immunomodulation, neural circuit reconstruction, and protective factor release. Different stem cell types, such as mesenchymal stem cells, marrow mononuclear cells, and neural stem cells, have also been considered for stroke therapy. In recent years, many clinical and preclinical studies on cell therapy have been carried out, and numerous results have shown that cell therapy has bright prospects in the treatment of stroke. However, some cell therapy issues are not yet fully understood, such as its optimal parameters including cell type choice, cell doses, and injection routes; therefore, a closer relationship between basic and clinical research is needed. In this review, the role of cell therapy in stroke treatment and its mechanisms was summarized, as well as the function of different stem cell types in stroke treatment and the clinical trials using stem cell therapy to cure stroke, to reveal future insights on stroke-related cell therapy, and to guide further studies.


2018 ◽  
Vol 20 (3) ◽  
pp. 173-180 ◽  
Author(s):  
Radoslav Zamborsky ◽  
Miroslav Kilian ◽  
Maria Csobonyeiova ◽  
Lubos Danisovic

The ability of stem cells to self-renew and differentiate into cell types of different lineages forms the basis of regenerative medicine, which focuses on repairing or regenerating damaged or diseased tissues. This has a huge potential to revolutionize medicine. It is anticipated that in future, stem cell therapy will be able to restore function in all major organs. Intensive research has been on-going to bring stem cell therapy from bench to bedside as it holds promise of widespread applications in different areas of medicine. This is also applicable to orthopaedics, where stem cell transplantation could benefit complications like spinal cord injury, critical bone defects, cartilage repair or degenerative disc disorders. Stem cell therapy has a potential to change the field of orthopaedics from surgical replacements and reconstructions to a field of regeneration and prevention. This article summarizes advances in stem cell applications in orthopaedics as well as discussing regulation and ethical issues related to the use of stem cells.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Gregor Poglajen ◽  
Gregor Zemljič ◽  
Sabina Frljak ◽  
Andraž Cerar ◽  
Vesna Andročec ◽  
...  

Aim of the Review. The aim of this review is to discuss recent advances in clinical aspects of stem cell therapy in chronic nonischemic heart failure (DCMP) with emphasis on patient selection, stem cell types, and delivery methods. Recent Findings. Several stem cell types have been considered for the treatment of DCMP patients. Bone marrow-derived cells and CD34+ cells have been demonstrated to improve myocardial performance, functional capacity, and neurohumoral activation. Furthermore, allogeneic mesenchymal stem cells were also shown to be effective in improving heart function in this patient population; this may represent an important step towards the development of a standardized stem cell product for widespread clinical use in patients with DCMP. Summary. The trials of stem cell therapy in DCMP patients have shown some promising results, thus making DCMP apparently more inviting target for stem cell therapy than chronic ischemic heart failure, where studies to date failed to demonstrate a consistent effect of stem cells on myocardial performance. Future stem cell strategies should aim for more personalized therapeutic approach by establishing the optimal stem cell type or their combination, dose, and delivery method for an individual patient adjusted for patient’s age and stage of the disease.


Sign in / Sign up

Export Citation Format

Share Document