scholarly journals A REPORT ON STEM CELLS AND THEIR APPLICATIONS

2020 ◽  
pp. 1-2
Author(s):  
Shantha A R

Stem cells are the building blocks of life. They have remarkable potential to regenerate and develop into many different cell types in the body during early life and growth. They are also a class of undifferentiated cells that are able to be differentiated into specialized cells types. Stem cells are characterized by certain features such as totipotency, pluripotency, multipotency, oligopotent and unipotency. The history of stem cell research had an embryonic beginning in the mid 1800s with the discovery that few cells could generate other cells. In the 1900s the first stem cells were discovered when it was found that cells generate blood cells. Nowadays, stem cell therapy is under research and till now, a very few stem cell therapies have been regarded as safe and successful. It is also found that stem cell therapy cast a number of side effects too. The cost of the procedure too is expensive and is not easily affordable.

2017 ◽  
Vol 1 (1) ◽  
pp. 17
Author(s):  
Siska Damayanti ◽  
Rina Triana ◽  
Angliana Chouw ◽  
Nurrani Mustika Dewi

Introduction: Each cell in human body is assigned with a specialized function to perform.  Before a cell becomes specialized, it is a stem cell. Stem cell research and therapy is progressing dramatically these days. Stem cell therapy holds enormous treatment potential for many diseases which currently have no or limited therapeutic options. Unfortunately, this potential also comes with side-effects. In this review, the positive and negative effects of regulation of stem cells will be explained.Content: Stem cells are undifferentiated cells that have potential to develop into many different cell types in the body during early life and growth. The type of stem cells are embryonic stem cells, induced pluripotent stem cells, somatic stem cells, foetal stem cells and mesenchymal stem cells. Stem cell transplantation is one form of stem cell therapy, it comes with different sources, and those are autologous and allogenic transplantation stem cells. In an autologous transplant, a patient’s own blood-forming stem cells are collected, meanwhile in an allogeneic transplant, a person’s stem cells are replaced with new stem cells obtained from a donor or from donated umbilical cord blood.Summary: Its abilities to maintain undifferentiated phenotype, self-renewing and differentiate itself into specialized cells, give rise to stem cell as a new innovation for the treatment of various diseases. In the clinical setting, stem cells are being explored in various conditions, such as in tissue repair and regeneration and autoimmune diseases therapy. But along with its benefit, stem cell therapy also holds some harm. It is known that the treatment using stem cell for curing and rehabilitation has the risk in tumor formation.


2020 ◽  
Vol 15 (6) ◽  
pp. 492-508
Author(s):  
Jobin Jose ◽  
Teena George ◽  
Aaron M. Thomas

Stem cell therapy is applicable for repair and replacement of damaged cells and tissues. Apart from transplanting cells to the body, the stem cell therapy directs them to grow new and healthy tissues. Stem cells in the area of regenerative medicines hold tremendous promise that may help to regenerate the damaged tissues and heal various diseases like multiple sclerosis, heart diseases, Parkinson’s disease, and so on. To prove the safety, efficacy, and for the requirement of a licence for manufacturing and sale, all the stem cell therapies should pass the required criteria and undergo certain examinations of the regulatory agencies. The regulatory authorities review the manufacturing procedures of products to assure its purity and potency. This review summarizes the comparative critical evaluations of existing regulations and developments on the stem cells research in India, USA, EU and Asian regions and also discusses the challenges that have to be overcome and the important points that should be understood to position India as a source of the perspective nation in stem cells around the world.


Author(s):  
Manoj Kumar Gupta ◽  
Suresh Mallepalli ◽  
Amooru G Damu ◽  
Ramakrishna Vadde

Background: Neuroblastoma (NBM) is the second leading pediatric cancer that develops from the precursors of the sympathetic nervous system. To date, surgery, chemotherapy, and radiation serve as the first line treatment against NBM in high-risk patients. However, few of these approaches have severe side effects. Recently, numerous studies have also reported that high chemotherapy doses, along with stem cell rescue, improvise event-free survival in patients. Objectives: In this review, the authors attempted to discuss the pathogenesis associated with NBM and how stem cell therapy can be employed for the treatment of NBM. Conclusions: Stem cells are a group of multipotent undifferentiated cells that are capable of producing all cells in a particular tissue, organ, or organism. They have an endogenous self-renewal property. This property is tightly modulated for the normal homeostasis within the body. However, the failure of this process leads to carcinogenesis, including NBM. As these properties are modulated via various intrinsic as well as extrinsic pathways, the arrest of these pathways via various drugs may help in controlling various carcinomas, including NBM. Recently, stem cells used diagnosis and therapy is widely for the NBM treatments. Nevertheless, most of the studies conducted to date are mainly designed on bulk-cell analysis, which in turn provides little information about the population of cells. Thus, the authors believe that, by employing single-cell RNA sequencing technologies and computational approaches, we can unmask the tumor heterogeneity in NBM in a more comprehensive way. In the near future, this information will be highly useful for the identification of biomarkers and treatment associated with NBM in humans.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Cesar Reis ◽  
Michael Wilkinson ◽  
Haley Reis ◽  
Onat Akyol ◽  
Vadim Gospodarev ◽  
...  

Neural stem cells (NSCs) offer a potential therapeutic benefit in the recovery from ischemic stroke. Understanding the role of endogenous neural stem and progenitor cells under normal physiological conditions aids in analyzing their effects after ischemic injury, including their impact on functional recovery and neurogenesis at the site of injury. Recent animal studies have utilized unique subsets of exogenous and endogenous stem cells as well as preconditioning with pharmacologic agents to better understand the best situation for stem cell proliferation, migration, and differentiation. These stem cell therapies provide a promising effect on stimulation of endogenous neurogenesis, neuroprotection, anti-inflammatory effects, and improved cell survival rates. Clinical trials performed using various stem cell types show promising results to their safety and effectiveness on reducing the effects of ischemic stroke in humans. Another important aspect of stem cell therapy discussed in this review is tracking endogenous and exogenous NSCs with magnetic resonance imaging. This review explores the pathophysiology of NSCs on ischemic stroke, stem cell therapy studies and their effects on neurogenesis, the most recent clinical trials, and techniques to track and monitor the progress of endogenous and exogenous stem cells.


2021 ◽  
Author(s):  
Sevil Kestane

This overview was evaluated by the development of diabetic retinopathy (DR) and the stem cell therapy approach. DR is a microvascular complication of diabetes mellitus, characterized by damage to the retinal blood vessels leading to progressive loss of vision. However, the pathophysiological mechanisms are complicated and not completely understood yet. The current treatment strategies have included medical, laser, intravitreal, and surgical approaches. It is known that the use of mesenchymal stem cells (MSC), which has a great potential, is promising for the treatment of many degenerative disorders, including the eye. In retinal degenerative diseases, MSCs were ameliorated retinal neurons and retinal pigmented epithelial cells in both in vitro and in vivo studies. Stem cell therapies show promise in neurodegenerative diseases. However, it is very important to know which type of stem cell will be used in which situations, the amount of stem cells to be applied, the method of application, and its physiological/neurophysiological effects. Therefore, it is of great importance to evaluate this subject physiologically. After stem cell application, its safety and efficacy should be followed for a long time. In the near future, widespread application of regenerative stem cell therapy may be a standard treatment in DR.


2021 ◽  
Vol 9 (09) ◽  
pp. 363-369
Author(s):  
Tripti Goarya ◽  
◽  
Chandrakala Janghel ◽  

The stem cells, derived from the cord blood are hematopoietic stem cells. These have immense potential in curing blood related disorders like blood cancers, thalassemia etc. These can be useful in treating tissue related disorders of heart, bone, spinal cord etc. Stem cells are characterized by the ability to renew through mitotic cell division and differentiate into a diverse range of specialized cell types. Stem Cells are the basic building blocks of the body and have the potential to replenish other cells and give rise to number of tissues which constitute different organs. To conduct the study, 60 antenatal mothers are selected the age range of subjects was 21 to 40 years. The need for the study arises after knowing those antenatal mothers were unaware and having inadequate knowledge regarding cord blood collection for stem cell therapy. The above facts created an interest to conduct a structured teaching programme to assess its effectiveness on knowledge and attitude of antenatal mother on cord blood collection for stem cell therapy. The pretest, the mean score of knowledge is 13.2 mean % is 50.7, & attitude is 31.58, mean % 63.16, the post test the mean score of knowledge is 18.1, mean % is 69.65. Attitude 38.05, mean % 76.1.


Author(s):  
Qi Zhang ◽  
Xin-xing Wan ◽  
Xi-min Hu ◽  
Wen-juan Zhao ◽  
Xiao-xia Ban ◽  
...  

Stem cell therapies have shown promising therapeutic effects in restoring damaged tissue and promoting functional repair in a wide range of human diseases. Generations of insulin-producing cells and pancreatic progenitors from stem cells are potential therapeutic methods for treating diabetes and diabetes-related diseases. However, accumulated evidence has demonstrated that multiple types of programmed cell death (PCD) existed in stem cells post-transplantation and compromise their therapeutic efficiency, including apoptosis, autophagy, necroptosis, pyroptosis, and ferroptosis. Understanding the molecular mechanisms in PCD during stem cell transplantation and targeting cell death signaling pathways are vital to successful stem cell therapies. In this review, we highlight the research advances in PCD mechanisms that guide the development of multiple strategies to prevent the loss of stem cells and discuss promising implications for improving stem cell therapy in diabetes and diabetes-related diseases.


2020 ◽  
Vol 10 (14) ◽  
pp. 4852 ◽  
Author(s):  
Shima Masoudi Asil ◽  
Jyoti Ahlawat ◽  
Gileydis Guillama Barroso ◽  
Mahesh Narayan

In addition to adverse health outcomes, neurological disorders have serious societal and economic impacts on patients, their family and society as a whole. There is no definite treatment for these disorders, and current available drugs only slow down the progression of the disease. In recent years, application of stem cells has been widely advanced due to their potential of self-renewal and differentiation to different cell types which make them suitable candidates for cell therapy. In particular, this approach offers great opportunities for the treatment of neurodegenerative disorders. However, some major issues related to stem-cell therapy, including their tumorigenicity, viability, safety, metastases, uncontrolled differentiation and possible immune response have limited their application in clinical scales. To address these challenges, a combination of stem-cell therapy with nanotechnology can be a solution. Nanotechnology has the potential of improvement of stem-cell therapy by providing ideal substrates for large scale proliferation of stem cells. Application of nanomaterial in stem-cell culture will be also beneficial to modulation of stem-cell differentiation using nanomedicines. Nanodelivery of functional compounds can enhance the efficiency of neuron therapy by stem cells and development of nanobased techniques for real-time, accurate and long-lasting imaging of stem-cell cycle processes. However, these novel techniques need to be investigated to optimize their efficiency in treatment of neurologic diseases.


2020 ◽  
Vol 15 (5) ◽  
pp. 1679-1688
Author(s):  
Alex HP Chan ◽  
Ngan F Huang

Although stem cell therapy has tremendous therapeutic potential, clinical translation of stem cell therapy has yet to be fully realized. Recently, patient comorbidities and lifestyle choices have emerged to be important factors in the efficacy of stem cell therapy. Tobacco usage is an important risk factor for numerous diseases, and nicotine exposure specifically has become increasing more prevalent with the rising use of electronic cigarettes. This review describes the effects of nicotine exposure on the function of various stem cells. We place emphasis on the differential effects of nicotine exposure in vitro and as well as in preclinical models. Further research on the effects of nicotine on stem cells will deepen our understanding of how lifestyle choices can impact the outcome of stem cell therapies.


Author(s):  
Hyun-Min Cho ◽  
Je-Yoel Cho

AbstractMassive death of cardiomyocytes is a major feature of cardiovascular diseases. Since the regenerative capacity of cardiomyocytes is limited, the regulation of their death has been receiving great attention. The cell death of cardiomyocytes is a complex mechanism that has not yet been clarified, and it is known to appear in various forms such as apoptosis, necrosis, etc. In ischemic heart disease, the apoptosis and necrosis of cardiomyocytes appear in two types of programmed forms (intrinsic and extrinsic pathways) and they account for a large portion of cell death. To repair damaged cardiomyocytes, diverse stem cell therapies have been attempted. However, despite the many positive effects, the low engraftment and survival rates have clearly limited the application of stem cells in clinical therapy. To solve these challenges, the introduction of the desired genes in stem cells can be used to enhance their capacity and improve their therapeutic efficiency. Moreover, as genome engineering technologies have advanced significantly, safer and more stable delivery of target genes and more accurate deletion of genes have become possible, which facilitates the genetic modification of stem cells. Accordingly, stem cell therapy for damaged cardiac tissue is expected to further improve. This review describes myocardial cell death, stem cell therapy for cardiac repair, and genome-editing technologies. In addition, we introduce recent stem cell therapies that incorporate genome-editing technologies in the myocardial infarction model.


Sign in / Sign up

Export Citation Format

Share Document