scholarly journals FORECASTING AN VIBRATION BY MONITORING THE DYNAMICS OF CHANGES ITS PRECURSORS OF VARIOUS PHYSICAL NATURE

2021 ◽  
Vol 2021 (2) ◽  
pp. 4396-4399
Author(s):  
VOLODYMYR NAHORNYI ◽  
◽  
ANTON PANDA ◽  
VALENTINO STRASER ◽  
IVETA PANDOVA ◽  
...  

Prediction crosses all fields of Science, being itself the evident manifestation of the Scientific Method. This study addresses the delicate aspect of vibration forecasting, which considers the association and interaction between the variables involved, such as radio anomalies, the proton density of the solar wind preceding strong vibration. The analysis is based on the collection of about 800 data of vibration of range equal to or greater than 6 occurred on a global scale between 2012 and 2014, related to solar wind and radio anomalies detected before the disastrous Tohoku vibration of March 11, 2011. To discuss the data has been applied the deductive logic, which allows to make predictions from the hypotheses, formulated in a mathematical way. In this context, the mechanisms of triggering vibration are hypothesized with an interaction of electrical nature, at subatomic scale. The outcome of the research has shown encouraging results on the application of the prediction formula, reinforced by the control of its parameters.

2020 ◽  
Vol 12 (20) ◽  
pp. 3350
Author(s):  
Shashwat Shukla ◽  
Valentyn Tolpekin ◽  
Shashi Kumar ◽  
Alfred Stein

The Moon has a large potential for space exploration and mining valuable resources. In particular, 3He provides rich sources of non-radioactive fusion fuel to fulfill cislunar and Earth’s energy demands, if found economically feasible. The present study focuses on developing advanced techniques to prospect 3He resources on the Moon from multi-sensor remote sensing perspectives. It characterizes optical changes in regolith materials due to space weathering as a new retention parameter and introduces a novel machine learning inversion model for retrieving the physical properties of the regolith. Our analysis suggests that the reddening of the soil predominantly governs the retention, along with attenuated mafic band depths. Moreover, semi-variograms show that the spatial variability of 3He is aligned with the episodic weathering events at different timescales. We also observed that pyroclastic regoliths with high dielectric constant and increased surface scattering mechanisms exhibited a 3He abundant region. For ejecta cover, the retention was weakly associated with the dielectric contrast and a circular polarization ratio (CPR), mainly because of the 3He-deficient nature of the regolith. Furthermore, cross-variograms revealed inherent cyclicity attributed to the sequential process of weathering effects. Our study provides new insights into the physical nature and near-surface alterations of lunar regoliths that influence the spatial distribution and retention of solar wind implanted 3He.


2020 ◽  
Author(s):  
Luca Sorriso-Valvo ◽  
Francesco Carbone ◽  
Daniele Telloni

<p>The fluctuations of proton density in the slow solar wind are analyzed by means of joint Empirical Mode Decomposition (EMD) and Mutual Information (MI) analysis. The analysis reveal that, within the turbulent inertial range, the EMD modes associated with nearby scales have their phases correlated, as shown by the large information exchange. This is a qunatitative measure of the information flow occurring in the turbulent cascade. On the other hand, at scales smaller than the ion gyroscale, the information flow is lost, and the mutual information is low, suggesting that in the kinetic range the nonlinear interacions are no longer sustaining a turbulent energy cascade.</p>


2020 ◽  
Author(s):  
Victor Montagud-Camps ◽  
František Němec ◽  
Jana Šafránková ◽  
Zdeněk Němeček ◽  
Roland Grappin ◽  
...  

<p>Similarly to the power density spectrum of magnetic field fluctuations in the solar wind, the spectrum of density fluctuations also shows multiple spectral slopes. Both of them present a spectral index varying between –3/2 and –5/3 in the inertial range and close to –2.8 between the proton and electron gyrofrequencies.</p><p>Despite these similarities, the spectrum of density fluctuations has a significant difference with respect to the magnetic and velocity fluctuations spectra: it shows a transition region between the inertial and the kinetic ranges with spectral index typically around –1.</p><p>We have combined the results of compressible Hall-MHD numerical simulations and measurements of the BMSW instrument onboard Spektr-R satellite to study the possible causes of the flattening in the density spectrum. Both numerical and experimental approaches point towards an important role played by Kinetic Alfvén Waves.</p>


2007 ◽  
Vol 25 (7) ◽  
pp. 1691-1707 ◽  
Author(s):  
M. Förster ◽  
G. Paschmann ◽  
S. E. Haaland ◽  
J. M. Quinn ◽  
R. B. Torbert ◽  
...  

Abstract. Based on drift velocity measurements of the EDI instruments on Cluster during the years 2001–2006, we have constructed a database of high-latitude ionospheric convection velocities and associated solar wind and magnetospheric activity parameters. In an earlier paper (Haaland et al., 2007), we have described the method, consisting of an improved technique for calculating the propagation delay between the chosen solar wind monitor (ACE) and Earth's magnetosphere, filtering the data for periods of sufficiently stable IMF orientations, and mapping the EDI measurements from their high-altitude positions to ionospheric altitudes. The present paper extends this study, by looking at the spatial pattern of the variances of the convection velocities as a function of IMF orientation, and by performing sortings of the data according to the IMF magnitude in the GSM y-z plane, |ByzIMF|, the estimated reconnection electric field, Er,sw, the solar wind dynamic pressure, Pdyn, the season, and indices characterizing the ring current (Dst) and tail activity (ASYM-H). The variability of the high-latitude convection shows characteristic spatial patterns, which are mirror symmetric between the Northern and Southern Hemispheres with respect to the IMF By component. The latitude range of the highest variability zone varies with IMF Bz similar to the auroral oval extent. The magnitude of convection standard deviations is of the same order as, or even larger than, the convection magnitude itself. Positive correlations of polar cap activity are found with |ByzIMF| and with Er,sw, in particular. The strict linear increase for small magnitudes of Er,sw starts to deviate toward a flattened increase above about 2 mV/m. There is also a weak positive correlation with Pdyn. At very small values of Pdyn, a secondary maximum appears, which is even more pronounced for the correlation with solar wind proton density. Evidence for enhanced nightside convection during high nightside activity is presented.


2020 ◽  
Author(s):  
Harry Manners ◽  
Adam Masters

<p>The magnetosphere of Jupiter is the largest planetary magnetosphere in the solar system, and plays host to internal dynamics that remain, in many ways, mysterious. Prominent among these mysteries are the ultra-low-frequency (<strong>ULF</strong>) pulses ubiquitous in this system. Pulsations in the electromagnetic emissions, magnetic field and flux of energetic particles have been observed for decades, with little to indicate the source mechanism. While ULF waves have been observed in the magnetospheres of all the magnetized planets, the magnetospheric environment at Jupiter seems particularly conducive to the emergence of ULF waves over a wide range of periods (1-100+ minutes). This is mainly due to the high variability of the system on a global scale: internal plasma sources and a powerful intrinsic magnetic field produce a highly-compressible magnetospheric cavity, which can be reduced to a size significantly smaller than its nominal expanded state by variations in the dynamic pressure of the solar wind. Compressive fronts in the solar wind, turbulent surface interactions on the magnetopause and internal plasma processes can also all lead to ULF wave activity inside the magnetosphere.</p><p>To gain the first comprehensive view of ULF waves in the Jovian system, we have performed a heritage survey of magnetic field data measured by six spacecraft that visited the magnetosphere (Galileo, Ulysses, Voyager 1 & 2 and Pioneer 10 & 11). We found several-hundred wave events consisting of wave packets parallel or transverse to the mean magnetic field, interpreted as fast-mode or Alfvénic MHD wave activity, respectively. Parallel and transverse events were often coincident in space and time, which may be evidence of global Alfvénic resonances of the magnetic field known as field-line-resonances. We found that 15-, 30- and 40-minute periods dominate the Jovian ULF wave spectrum, in agreement with the dominant “magic frequencies” often reported in existing literature.</p><p>We will discuss potential driving mechanisms as informed by the results of the heritage survey, how this in turn affects our understanding of energy transfer in the magnetosphere, and potential investigations to be made using data from the JUNO spacecraft. We will also discuss the potential for multiple resonant cavities, and how the resonance modes of the Jovian magnetosphere may differ from those of the other magnetized planets.</p>


Author(s):  
Neil Tennant

This is a foundational work, written not just for philosophers of logic, but for logicians and foundationalists generally. Like Frege we seek to deal with the formal first-order language of mathematics. We revisit Gentzen’s proof theory in order to build relevance into proofs, while leaving intact all the logical power one is entitled to expect of a deductive logic for mathematics and for scientific method generally. Proof systems are constituted by particular choices of rules of inference. We raise the issue of the reflexive stability of any argument for a particular choice of logic as the ‘right’ logic. We examine the question of pluralism v. absolutism in choice of logic, and suggest that the informal notion of valid argument is stable and robust enough for us to be able to ‘get it right’ with our formal systems of proof for both constructive and non-constructive reasoning.


2007 ◽  
Vol 25 (9) ◽  
pp. 2053-2068 ◽  
Author(s):  
N. Longden ◽  
F. Honary ◽  
A. J. Kavanagh ◽  
J. Manninen

Abstract. The arrival of an interplanetary coronal mass ejection (ICME) triggered a sudden storm commencement (SSC) at ~09:22 UT on the 7 January 2005. The ICME followed a quiet period in the solar wind and interplanetary magnetic field (IMF). We present global scale observations of energetic electron precipitation during the moderate geomagnetic storm driven by the ICME. Energetic electron precipitation is inferred from increases in cosmic noise absorption (CNA) recorded by stations in the Global Riometer Array (GLORIA). No evidence of CNA was observed during the first four hours of passage of the ICME or following the sudden commencement (SC) of the storm. This is consistent with the findings of Osepian and Kirkwood (2004) that SCs will only trigger precipitation during periods of geomagnetic activity or when the magnetic perturbation in the magnetosphere is substantial. CNA was only observed following enhanced coupling between the IMF and the magnetosphere, resulting from southward oriented IMF. Precipitation was observed due to substorm activity, as a result of the initial injection and particles drifting from the injection region. During the recovery phase of the storm, when substorm activity diminished, precipitation due to density driven increases in the solar wind dynamic pressure (Pdyn) were identified. A number of increases in Pdyn were shown to drive sudden impulses (SIs) in the geomagnetic field. While many of these SIs appear coincident with CNA, SIs without CNA were also observed. During this period, the threshold of geomagnetic activity required for SC driven precipitation was exceeded. This implies that solar wind density driven SIs occurring during storm recovery can drive a different response in particle precipitation to typical SCs.


1994 ◽  
Vol 144 ◽  
pp. 453-460
Author(s):  
V. H. Hansteen

AbstractThe general aspects of solar wind acceleration are well described by considering the thermally driven outflow from an electron – proton corona. However, two puzzling observations remain to be explained: 1) The predicted asymptotic flow velocity is much lower than that observed in high speed streams, and 2) The proton flux observed at 1AU varies considerably less than expected when considering the sensitivity of the proton flux to the coronal temperature predicted by thermally driven models. The solution of the first problem rests upon finding a mechanism which can deposit energy and/or momentum beyond the critical point of the flow. The invariance of the proton flux requires that a mechanism for maintaining a relatively constant proton density scale height in the subsonic region of the flow is found. One such possibility lies in considering the effects of an enhanced coronal helium abundance on the force balance of the subsonic flow. This scenario is discussed in some depth.


2021 ◽  
Author(s):  
Die Duan ◽  
Jiansen He ◽  
Xingyu Zhu ◽  
Daniel Verscharen ◽  
Trevor Bowen ◽  
...  

<div> <div>The 4th encounter (~30 Rs away from the sun) of the Parker Solar Probe (PSP) is a great opportunity to observe the radial evolution of the solar wind from the inner heliosphere to the near-earth environment when the sun, PSP, and the earth are quasi-radial aligned. Similar features of the solar wind are observed from both PSP and Wind (at 1 au) measurements. The accelerating-solar-wind model could be more suitable than the constant speed model for the observation, which means the solar wind is still accelerating from 30 Rs to 1 au. Both PSP and Wind measure the co-existence of the Alfvenic and compressive fluctuations in the solar wind. The correlated radial velocity (dVR), proton density (dn) and temperature (dT) fluctuations indicate the nature of the compressive fluctuations are outward-propagating slow waves. However, dn and dB is not correlated from PSP, but correlated from Wind, which indicates the propagating direction of the slow waves is changed. Comparing the radial evolution of the energies of both Alfvenic and compressive fluctuations with the WKB model, we find the observed energy decays slower than the theoretical prediction, which indicates an extra energy injection during the solar wind propagation.</div> <!--5f39ae17-8c62-4a45-bc43-b32064c9388a:W3siYmxvY2tJZCI6Ijk2NDAtMTYxMTEwNTcwNDAwNyIsImJsb2NrVHlwZSI6InBhcmFncmFwaCIsInN0eWxlcyI6eyJhbGlnbiI6ImxlZnQiLCJpbmRlbnQiOjAsInRleHQtaW5kZW50IjowLCJsaW5lLWhlaWdodCI6MS43NSwiYmFjay1jb2xvciI6IiIsInBhZGRpbmciOiIifSwidHlwZSI6InBhcmFncmFwaCIsInJpY2hUZXh0Ijp7ImRhdGEiOlt7ImNoYXIiOiJUIn0seyJjaGFyIjoiaCJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiNCJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJoIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoiYyJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiJ1In0seyJjaGFyIjoibiJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiciJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiIoIn0seyJjaGFyIjoifiJ9LHsiY2hhciI6IjMifSx7ImNoYXIiOiIwIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6IlIifSx7ImNoYXIiOiJzIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJ3In0seyJjaGFyIjoiYSJ9LHsiY2hhciI6InkifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiZiJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoibSJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiaCJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoicyJ9LHsiY2hhciI6InUifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoiKSJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoiZiJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiaCJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiUCJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoiayJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6IlMifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoibCJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6IlAifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoibyJ9LHsiY2hhciI6ImIifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6IigifSx7ImNoYXIiOiJQIn0seyJjaGFyIjoiUyJ9LHsiY2hhciI6IlAifSx7ImNoYXIiOiIpIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6ImkifSx7ImNoYXIiOiJzIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiZyJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoibyJ9LHsiY2hhciI6InAifSx7ImNoYXIiOiJwIn0seyJjaGFyIjoibyJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoidSJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6InkifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoibyJ9LHsiY2hhciI6ImIifSx7ImNoYXIiOiJzIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJ2In0seyJjaGFyIjoiZSJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiaCJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiciJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJkIn0seyJjaGFyIjoiaSJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJsIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJ2In0seyJjaGFyIjoibyJ9LHsiY2hhciI6ImwifSx7ImNoYXIiOiJ1In0seyJjaGFyIjoidCJ9LHsiY2hhciI6ImkifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoiZiJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiaCJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoicyJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiJsIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoidyJ9LHsiY2hhciI6ImkifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoiZCJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJmIn0seyJjaGFyIjoiciJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiJtIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJoIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiciJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJoIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6ImwifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoibyJ9LHsiY2hhciI6InMifSx7ImNoYXIiOiJwIn0seyJjaGFyIjoiaCJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoibyJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiaCJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoiciJ9LHsiY2hhciI6Ii0ifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiaCJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6InYifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoiciJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoibSJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJ3In0seyJjaGFyIjoiaCJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJoIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJzIn0seyJjaGFyIjoidSJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiIsIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6IlAifSx7ImNoYXIiOiJTIn0seyJjaGFyIjoiUCJ9LHsiY2hhciI6IiwifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiJkIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJoIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiaCJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoiciJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoicSJ9LHsiY2hhciI6InUifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoicyJ9LHsiY2hhciI6ImkifSx7ImNoYXIiOiItIn0seyJjaGFyIjoiciJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJkIn0seyJjaGFyIjoiaSJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJsIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJsIn0seyJjaGFyIjoiaSJ9LHsiY2hhciI6ImcifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6ImQifSx7ImNoYXIiOiIuIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6IlMifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoibSJ9LHsiY2hhciI6ImkifSx7ImNoYXIiOiJsIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiZiJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6InUifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6InMifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoibyJ9LHsiY2hhciI6ImYifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6ImgifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6InMifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoibCJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6IncifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6ImQifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiJiIn0seyJjaGFyIjoicyJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoidiJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJkIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6ImYifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoibyJ9LHsiY2hhciI6Im0ifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiYiJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiaCJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJQIn0seyJjaGFyIjoiUyJ9LHsiY2hhciI6IlAifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiJkIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6IlcifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6ImQifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiKCJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiICJ9LHsiY2hhciI6IjEifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6InUifSx7ImNoYXIiOiIpIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6Im0ifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6InMifSx7ImNoYXIiOiJ1In0seyJjaGFyIjoiciJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJtIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoicyJ9LHsiY2hhciI6Ii4ifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiVCJ9LHsiY2hhciI6ImgifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJjIn0seyJjaGFyIjoiYyJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJsIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6ImkifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoiZyJ9LHsiY2hhciI6Ii0ifSx7ImNoYXIiOiJzIn0seyJjaGFyIjoibyJ9LHsiY2hhciI6ImwifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoiciJ9LHsiY2hhciI6Ii0ifSx7ImNoYXIiOiJ3In0seyJjaGFyIjoiaSJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiJkIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6Im0ifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoiZCJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJsIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6ImMifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoidSJ9LHsiY2hhciI6ImwifSx7ImNoYXIiOiJkIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6ImIifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6Im0ifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoiciJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoicyJ9LHsiY2hhciI6InUifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJiIn0seyJjaGFyIjoibCJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6ImgifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiaCJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiYyJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoicyJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoicyJ9LHsiY2hhciI6InAifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6ImQifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoibSJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiJkIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6ImwifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiZiJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJoIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoiYiJ9LHsiY2hhciI6InMifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiciJ9LHsiY2hhciI6InYifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6ImkifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6IiwifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoidyJ9LHsiY2hhciI6ImgifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoiYyJ9LHsiY2hhciI6ImgifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoibSJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6InMifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6ImgifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6InMifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoibCJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6IncifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6ImQifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiaSJ9LHsiY2hhciI6InMifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoicyJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoibCJ9LHsiY2hhciI6ImwifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6ImMifSx7ImNoYXIiOiJjIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6ImwifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoiciJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiaSJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiJnIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6ImYifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoibyJ9LHsiY2hhciI6Im0ifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiMyJ9LHsiY2hhciI6IjAifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiUiJ9LHsiY2hhciI6InMifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiMSJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoidSJ9LHsiY2hhciI6Ii4ifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiQiJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiaCJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJQIn0seyJjaGFyIjoiUyJ9LHsiY2hhciI6IlAifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiJkIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6IlcifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6ImQifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoibSJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoicyJ9LHsiY2hhciI6InUifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiaCJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiYyJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiItIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6IngifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoicyJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6ImMifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiJmIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJoIn1dLCJpc1JpY2hUZXh0Ijp0cnVlLCJrZWVwTGluZUJyZWFrIjp0cnVlfX1d--></div><p><!--5f39ae17-8c62-4a45-bc43-b32064c9388a:W3siYmxvY2tJZCI6Ijk2NDAtMTYxMTEwNTcwNDAwNyIsImJsb2NrVHlwZSI6InBhcmFncmFwaCIsInN0eWxlcyI6eyJhbGlnbiI6ImxlZnQiLCJpbmRlbnQiOjAsInRleHQtaW5kZW50IjowLCJsaW5lLWhlaWdodCI6MS43NSwiYmFjay1jb2xvciI6IiIsInBhZGRpbmciOiIifSwidHlwZSI6InBhcmFncmFwaCIsInJpY2hUZXh0Ijp7ImRhdGEiOlt7ImNoYXIiOiJUIn0seyJjaGFyIjoiaCJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiNCJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJoIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoiYyJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiJ1In0seyJjaGFyIjoibiJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiciJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiIoIn0seyJjaGFyIjoifiJ9LHsiY2hhciI6IjMifSx7ImNoYXIiOiIwIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6IlIifSx7ImNoYXIiOiJzIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJ3In0seyJjaGFyIjoiYSJ9LHsiY2hhciI6InkifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiZiJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoibSJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiaCJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoicyJ9LHsiY2hhciI6InUifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoiKSJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoiZiJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiaCJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiUCJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoiayJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6IlMifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoibCJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6IlAifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoibyJ9LHsiY2hhciI6ImIifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6IigifSx7ImNoYXIiOiJQIn0seyJjaGFyIjoiUyJ9LHsiY2hhciI6IlAifSx7ImNoYXIiOiIpIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6ImkifSx7ImNoYXIiOiJzIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiZyJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoibyJ9LHsiY2hhciI6InAifSx7ImNoYXIiOiJwIn0seyJjaGFyIjoibyJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoidSJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6InkifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoibyJ9LHsiY2hhciI6ImIifSx7ImNoYXIiOiJzIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJ2In0seyJjaGFyIjoiZSJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiaCJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiciJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJkIn0seyJjaGFyIjoiaSJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJsIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJ2In0seyJjaGFyIjoibyJ9LHsiY2hhciI6ImwifSx7ImNoYXIiOiJ1In0seyJjaGFyIjoidCJ9LHsiY2hhciI6ImkifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoiZiJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiaCJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoicyJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiJsIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoidyJ9LHsiY2hhciI6ImkifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoiZCJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJmIn0seyJjaGFyIjoiciJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiJtIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJoIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiciJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJoIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6ImwifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoibyJ9LHsiY2hhciI6InMifSx7ImNoYXIiOiJwIn0seyJjaGFyIjoiaCJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoibyJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiaCJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoiciJ9LHsiY2hhciI6Ii0ifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiaCJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6InYifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoiciJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoibSJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJ3In0seyJjaGFyIjoiaCJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJoIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJzIn0seyJjaGFyIjoidSJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiIsIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6IlAifSx7ImNoYXIiOiJTIn0seyJjaGFyIjoiUCJ9LHsiY2hhciI6IiwifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiJkIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJoIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiaCJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoiciJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoicSJ9LHsiY2hhciI6InUifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoicyJ9LHsiY2hhciI6ImkifSx7ImNoYXIiOiItIn0seyJjaGFyIjoiciJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJkIn0seyJjaGFyIjoiaSJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJsIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJsIn0seyJjaGFyIjoiaSJ9LHsiY2hhciI6ImcifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6ImQifSx7ImNoYXIiOiIuIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6IlMifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoibSJ9LHsiY2hhciI6ImkifSx7ImNoYXIiOiJsIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiZiJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6InUifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6InMifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoibyJ9LHsiY2hhciI6ImYifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6ImgifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6InMifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoibCJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6IncifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6ImQifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiJiIn0seyJjaGFyIjoicyJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoidiJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJkIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6ImYifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoibyJ9LHsiY2hhciI6Im0ifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiYiJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiaCJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJQIn0seyJjaGFyIjoiUyJ9LHsiY2hhciI6IlAifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiJkIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6IlcifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6ImQifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiKCJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiICJ9LHsiY2hhciI6IjEifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6InUifSx7ImNoYXIiOiIpIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6Im0ifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6InMifSx7ImNoYXIiOiJ1In0seyJjaGFyIjoiciJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJtIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoicyJ9LHsiY2hhciI6Ii4ifV0sImlzUmljaFRleHQiOnRydWUsImtlZXBMaW5lQnJlYWsiOnRydWV9fV0=--></p>


Sign in / Sign up

Export Citation Format

Share Document