scholarly journals THERMAL INFLUENCE ON THE SURFACE INTEGRITY DURING SINGLE-LIP DEEP HOLE DRILLING OF STEEL COMPONENTS

2021 ◽  
Vol 2021 (3) ◽  
pp. 4636-4643
Author(s):  
J. Nickel ◽  
◽  
N. Baak ◽  
P. Volke ◽  
F. Walther ◽  
...  

The thermomechanical load on the workpiece surface during the machining process strongly influences its surface integrity and the resulting fatigue strength of the components. In single-lip drilling, the measurement of the mechanical load using dynamometers is well established, but the thermal interactions between the tool and the workpiece material in the surface area are difficult to determine with conventional test setups. In this paper, the development and implementation of an in-process measurement of the thermal load on the bore subsurface is presented. The experimental setup includes a two-color ratio pyrometer in combination with thermocouples, which enable temperature measurement on the tool’s cutting edge as well as in the bore subsurface. In combination, a force measurement dynamometer for measuring the occurring force and torque is used. Thus, the influence of different cutting parameter variations on the thermomechanical impact on the bore surface can be evaluated.

2014 ◽  
Vol 1018 ◽  
pp. 189-196 ◽  
Author(s):  
Stepan Jermolajev ◽  
Ekkard Brinksmeier

This paper presents a diagram of maximum contact zone temperatureTmaxversus contact timeΔt, based on the analysis of workpiece surface layer properties after cylindrical grinding experiments. Apart from resulting surface layer properties, process quantities (Tmax, normal and tangential grinding forcesFn,Ft) are investigated with reference to the resulting workpiece surface layer state as well. Ground workpieces are analyzed by performing Barkhausen noise level measurements together with subsequent metallographic and X-ray diffraction investigations. By mapping characteristic valuesTmaxand the contact timeΔtto corresponding surface layer properties, a general analysis of workpiece material response to the thermo-mechanical load during grinding is possible.


2021 ◽  
Vol 5 (4) ◽  
pp. 120
Author(s):  
Jan Nickel ◽  
Nikolas Baak ◽  
Pascal Volke ◽  
Frank Walther ◽  
Dirk Biermann

The fatigue behavior of components made of quenched and tempered steel alloys is of elementary importance, especially in the automotive industry. To a great extent, the components’ fatigue strength is influenced by the surface integrity properties. For machined components, the generated surface is often exposed to the highest thermomechanical loads, potentially resulting in transformations of the subsurface microstructure and hardness as well as the residual stress state. While the measurement of the mechanical load using dynamometers is well established, in-process temperature measurements are challenging, especially for drilling processes due to the process kinematics and the difficult to access cutting zone. To access the impact of the thermomechanical load during the single-lip drilling process on the produced surface integrity, an in-process measurement was developed and applied for different cutting parameters. By using a two-color pyrometer for temperature measurements at the tool’s cutting edge in combination with a dynamometer for measuring the occurring force and torque, the influence of different cutting parameter variations on the thermomechanical impact on the bore surface are evaluated. By correlating force and temperature values with the resultant surface integrity, a range of process parameters can be determined in which the highest dynamic strength of the samples is expected. Thermally induced defects, such as the formation of white etching layers (WEL), can be avoided by the exact identification of critical parameter combinations whereas a mechanically induced microstructure refinement and the induction of residual compressive stresses in the subsurface zone is targeted. Further, eddy-current analysis as a non-destructive method for surface integrity evaluation is used for the characterization of the surface integrity properties.


2009 ◽  
Vol 69-70 ◽  
pp. 500-504
Author(s):  
X.D. Guo ◽  
Qing Long An ◽  
B. Zou ◽  
Ming Chen

GH80A has been widely used in industry for its excellent property under high temperature. The surface integrity is one of the key factors that determine the lifetime. Hence, it’s worth to study surface topography and residual stress which are two important indexes used for evaluating the surface integrity. They are both resulted from the coupling of the mechanical and thermal effect during the turning which can not be well explained with experiment and numerical calculation. In this paper, workpiece surface topography was studied under different cutting parameters. The residual stress is measured and simulated to show more details about the effect of cutting parameters. The cutting temperature which is difficult to pick up in experiments is also simulated to explain the machining process.


2020 ◽  
Vol 87 (12) ◽  
pp. 757-767
Author(s):  
Robert Wegert ◽  
Vinzenz Guski ◽  
Hans-Christian Möhring ◽  
Siegfried Schmauder

AbstractThe surface quality and the subsurface properties such as hardness, residual stresses and grain size of a drill hole are dependent on the cutting parameters of the single lip deep hole drilling process and therefore on the thermomechanical as-is state in the cutting zone and in the contact zone between the guide pads and the drill hole surface. In this contribution, the main objectives are the in-process measurement of the thermal as-is state in the subsurface of a drilling hole by means of thermocouples as well as the feed force and drilling torque evaluation. FE simulation results to verify the investigations and to predict the thermomechanical conditions in the cutting zone are presented as well. The work is part of an interdisciplinary research project in the framework of the priority program “Surface Conditioning in Machining Processes” (SPP 2086) of the German Research Foundation (DFG).This contribution provides an overview of the effects of cutting parameters, cooling lubrication and including wear on the thermal conditions in the subsurface and mechanical loads during this machining process. At first, a test set up for the in-process temperature measurement will be presented with the execution as well as the analysis of the resulting temperature, feed force and drilling torque during drilling a 42CrMo4 steel. Furthermore, the results of process simulations and the validation of this applied FE approach with measured quantities are presented.


2021 ◽  
Vol 11 (11) ◽  
pp. 4981
Author(s):  
Andreas Tausendfreund ◽  
Dirk Stöbener ◽  
Andreas Fischer

In the concept of the process signature, the relationship between a material load and the modification remaining in the workpiece is used to better understand and optimize manufacturing processes. The basic prerequisite for this is to be able to measure the loads occurring during the machining process in the form of mechanical deformations. Speckle photography is suitable for this in-process measurement task and is already used in a variety of ways for in-plane deformation measurements. The shortcoming of this fast and robust measurement technique based on image correlation techniques is that out-of-plane deformations in the direction of the measurement system cannot be detected and increases the measurement error of in-plane deformations. In this paper, we investigate a method that infers local out-of-plane motions of the workpiece surface from the decorrelation of speckle patterns and is thus able to reconstruct three-dimensional deformation fields. The implementation of the evaluation method enables a fast reconstruction of 3D deformation fields, so that the in-process capability remains given. First measurements in a deep rolling process show that dynamic deformations underneath the die can be captured and demonstrate the suitability of the speckle method for manufacturing process analysis.


Author(s):  
Andre D. L. Batako ◽  
Valery V. Kuzin ◽  
Brian Rowe

High Efficiency Deep Grinding (HEDG) has been known to secure high removal rates in grinding processes at high wheel speed, relatively large depth of cut and moderately high work speed. High removal rates in HEDG are associated with very efficient grinding and secure very low specific energy comparable to conventional cutting processes. Though there exist HEDG-enabled machine tools, the wide spread of HEDG has been very limited due to the requirement for the machine tool and process design to ensure workpiece surface integrity. HEDG is an aggressive machining process that requires an adequate selection of grinding parameters in order to be successful within a given machine tool and workpiece configuration. This paper presents progress made in the development of a specialised HEDG machine. Results of HEDG processes obtained from the designed machine tool are presented to illustrate achievable high specific removal rates. Specific grinding energies are shown alongside with measured contact arc temperatures. An enhanced single-pole thermocouple technique was used to measure the actual contact temperatures in deep cutting. The performance of conventional wheels is depicted together with the performance of a CBN wheel obtained from actual industrial tests.


2011 ◽  
Vol 223 ◽  
pp. 662-670 ◽  
Author(s):  
Hendrik Puls ◽  
Fritz Klocke ◽  
Dieter Lung ◽  
Ralf Schlosser ◽  
Peter Frank ◽  
...  

The presented work is a part of the EU integrated and collaborative project “Aligning, Holding and Fixing Flexible and Difficult to Handle Components” (AFFIX). The deformation of thin-walled components, caused by a thermo-mechanical load in the machining process, is a common challenge in manufacturing automotive engine heads and gearboxes. Geometrical tolerances like flatness are strongly affected by the thermo-mechanical process loads, and therefore cause production scraps and serious engine faults in case of undetected defects. To avoid long process setup times, a methodology has been developed to calculate the resulting part flatness. Based on the developed methodology a clamping strategy has been identified which minimises the resulting part deformation in milling operations and thus ensures the accuracy and quality of thin-walled aluminum power train parts.


Author(s):  
Xiaoliang Jin

The contact between the tool flank wear land and wavy surface of workpiece causes energy dissipation which influences the tool vibration and chatter stability during a dynamic machining process. The process damping coefficient is affected by cutting conditions and constitutive property of workpiece material. This paper presents a finite element model of dynamic orthogonal cutting process with tool round edge and flank wear land. The process damping coefficient is identified based on the energy dissipation principle. The simulated results are experimentally validated.


Author(s):  
Khorssand Haghpassand

Abstract The five-axis constrained and optimal orientation planning is formulated as a design optimization problem that incorporates the process machine’s kinematic constraints with the workpiece and tool geometry, to obtain a constrained setup orientation which exploits the maximum capabilities of existing machines. This work will introduce this problem, and will obtain the setup orientation for two different types of rotation structures, i.e., tool rotation and table rotation in O(N) time. Further, the obtained constrained setup orientation, will be augmented to incorporate the workpiece surface magnitude, along with different machine rotation structures, to obtain an optimal setup orientation for different machine rotation structures. The drilling process is also introduced and formulated as additional constraints to the optimization problem. The primary application of the introduced algorithms, is the machining process, where, they can efficiently reduce the number of tool motions and surface finishing processes. However, the solution is very suitable for many manufacturing applications, such as inspection, assembly, robotics, painting, welding, aerospace, electronic surface mount technology, and etc.


Author(s):  
Prof. Hemant k. Baitule ◽  
Satish Rahangdale ◽  
Vaibhav Kamane ◽  
Saurabh Yende

In any type of machining process the surface roughness plays an important role. In these the product is judge on the basis of their (surface roughness) surface finish. In machining process there are four main cutting parameter i.e. cutting speed, feed rate, depth of cut, spindle speed. For obtaining good surface finish, we can use the hot turning process. In hot turning process we heat the workpiece material and perform turning process multiple time and obtain the reading. The taguchi method is design to perform an experiment and L18 experiment were performed. The result is analyzed by using the analysis of variance (ANOVA) method. The result Obtain by this method may be useful for many other researchers.


Sign in / Sign up

Export Citation Format

Share Document