Study on the Surface Topography and Residual Stress for Dry Turning of GH80A

2009 ◽  
Vol 69-70 ◽  
pp. 500-504
Author(s):  
X.D. Guo ◽  
Qing Long An ◽  
B. Zou ◽  
Ming Chen

GH80A has been widely used in industry for its excellent property under high temperature. The surface integrity is one of the key factors that determine the lifetime. Hence, it’s worth to study surface topography and residual stress which are two important indexes used for evaluating the surface integrity. They are both resulted from the coupling of the mechanical and thermal effect during the turning which can not be well explained with experiment and numerical calculation. In this paper, workpiece surface topography was studied under different cutting parameters. The residual stress is measured and simulated to show more details about the effect of cutting parameters. The cutting temperature which is difficult to pick up in experiments is also simulated to explain the machining process.

Author(s):  
Chao Liu ◽  
Yan He ◽  
Yufeng Li ◽  
Yulin Wang ◽  
Shilong Wang ◽  
...  

Abstract The residual stresses could affect the ability of components to bear loading conditions and also the performance. The researchers considered workpiece surface as a plane and ignored the effect of surface topography induced by the intermittent cutting process when modeling residual stresses. The aim of this research develops an analytical model to predict workpiece residual stresses during intermittent machining by correlating the effect of surface topography. The relative motions of tool and workpiece are analyzed for modeling thermal-mechanical and surface topography. The influence of dynamic cutting force and thermal on different positions of surface topography is also considered in analytical model. Then the residual stresses model with the surface topography effect can be developed in intermittent cutting. The analytical models of dynamic cutting force, surface topography and residual stresses are verified by the experiments. The variation trend of evaluated values of the residual stress of workpiece is basically consistent with that of measured values. The compressive residual stress of workpiece surface in highest point of the surface topography are higher than that in the lowest point.


2012 ◽  
Vol 497 ◽  
pp. 10-14
Author(s):  
Tie Jun Song ◽  
Zhi Xiong Zhou ◽  
Wei Li ◽  
Ai Min Tang

Cup wheel grinding and etching pretreatment are widely used in complex coated cemented carbide cutting tools machining process. The two processes determine different surface properties due to various mechanical and thermal loads in grinding and complex chemical reaction in etching pretreatment. In this paper, the effect of the grinding wheel speed, the grinding feed rate and the etching time with the Murakami and acid solution on the residual stress and surface topography of coated cemented carbide cutting tools are investigated. After each process, the samples are characterized by scanning electron microscopy and X-ray diffraction. It is found that the grinding wheel speed has a significant influence on residual stress measured in the WC phase. Etching by Murakami generated smooth surface, which partly removed the near-surface residual stress quickly but cannot eliminate.


Author(s):  
Xia Ji ◽  
Steven Y Liang

This article presents a sensitivity analysis of residual stress based on the verified residual stress prediction model. The machining-induced residual stress is developed as a function of cutting parameters, tool geometry, material properties, and lubrication conditions. Based on the residual stress predictive model, the main effects of the cutting force, cutting temperature, and residual stress are quantitatively analyzed through the cosine amplitude method. The parametric study is carried out to investigate the effects of minimum quantity lubrication parameters, cutting parameters, and tool geometry on the cutting performances. Results manifest that the cutting force and residual stress are more sensitive to the heat transfer coefficient and the depth of cut, while the cutting temperature is more sensitive to the cutting speed. Large maximum compressive residual stress is obtained under a lower flow rate of minimum quantity lubrication, small depth of cut, and the proper air–oil mixture ratio. This research can support the controlling and optimization of residual stress in industrial engineering by strategically adjusting the application parameters of minimum quantity lubrication.


2014 ◽  
Vol 621 ◽  
pp. 611-616 ◽  
Author(s):  
Yan Juan Hu ◽  
Yao Wang ◽  
Zhan Li Wang

In order to study the temperature field distribution in the process of machining, the finite element theory was used to establish the orthogonal cutting finite element model, and the key technologies were discussed simultaneously. By using ABAQUS software for cutting AISI1045 steel temperature field of numerical simulation, the conclusion about changing rule of cutting temperature field can be gotten. The results show that this method can efficiently simulate the distribution of temperature field of the workpiece, cutter and scraps, which is effected by thermo-mechanical coupling in metal work process. It provides the theory evidence for the intensive study of metal-cutting principle, optimizing cutting parameters and improving processing technic and so on.


Author(s):  
Xuehong Shen ◽  
Dinghua Zhang ◽  
Liang Tan

To explore the effects of cutter path orientations on milling force, temperature, and surface integrity, end ball milling experiments of TC17 titanium alloy were accomplished derived from different cutter path orientations. The experiment results of milling force and temperature were obtained. Combining with the thermo-mechanical coupling, this paper analyzes the impact of the cutter path orientations on the surface roughness, surface topography, in-depth residual stress, microhardness distributions, and microstructure. The results indicate that the maximum milling force is 224.24 N and the temperature is 672°C under vertical downward milling path, while horizontal downward orientation provides the lowest cutting force of 81.12 N and temperature of 493°C. The surface topography of the four cutter path orientations is basin-like shape, and the minimum surface roughness of 1.128 µm is achieved under vertical upward mode. Moreover, the maximum compressive residual stress of −491.8 MPa and the maximum residual stress layer depth of 45 µm are acquired under vertical downward milling. The maximum microhardness can arrive at 390 HV0.025 under the vertical path. Additionally, the transformation of the material microstructure remains elongated, bent, and fractured. The maximum plastic deformation layer depth is 44 µm under vertical downward milling path.


2009 ◽  
Vol 69-70 ◽  
pp. 505-509
Author(s):  
X.Y. Wang ◽  
Qing Long An ◽  
Yun Shan Zhang ◽  
H. Xu ◽  
Ming Chen

Stainless 2Cr13 is used as petroleum pipe material for its good performance in condition of high temperature, high pressure and corrosive environment. Buttress thread turning is a type of heavy machining, which has a great influence on the residual stress of workpiece. Residual stress is usually determined by cutting parameters and tool geometries. Experiments with different geometrical tools were carried out and a finite element model was used to study the influence of tool geometries on the residual stress. Experimental and simulated results showed that relatively bigger rake angle and smaller corner radius make a relatively lower tensile residual stress of workpiece surface in dry turning buttress thread.


2006 ◽  
Vol 532-533 ◽  
pp. 241-244
Author(s):  
Zhen Hai Long ◽  
Xi Bin Wang ◽  
Wen Xiang Zhao

Aiming to study the surface integrity of an ultra-high strength alloy in high speed milling process, 2K factorial design experiments were conducted to explore the effects of cutting parameters, such as cutting velocity, feed rate and depth of cut, on microstructure, microhardness and residual stress in the sub-surface layer. The following conclusions could be drawn from this paper within the range of cutting conditions: The cutting parameters could significantly influence the microstructure and microhardness in the surface and sub-surface layers, and the original fine martensite of the surface and sub-surface layer might be transformed into the over-tempered martensite, under-tempered martensite, secondary troostite, and tempered sorbite; Compressive residual stress distributions with different maximum stress values in the sub-surface layer of machined surfaces could emerge in high speed cutting process; the properly arranged cutting condition could achieve ideal surface characteristics and surface integrity.


2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Guoliang Liu ◽  
Chuanzhen Huang ◽  
Bin Zhao ◽  
Wei Wang ◽  
Shufeng Sun

AbstractFatigue performance is a serious concern for mechanical components subject to cyclical stresses, particularly where safety is paramount. The fatigue performance of components relies closely on their surface integrity because the fatigue cracks generally initiate from free surfaces. This paper reviewed the published data, which addressed the effects of machined surface integrity on the fatigue performance of metal workpieces. Limitations in existing studies and the future directions in anti-fatigue manufacturing field were proposed. The remarkable surface topography (e.g., low roughness and few local defects and inclusions) and large compressive residual stress are beneficial to fatigue performance. However, the indicators that describe the effects of surface topography and residual stress accurately need further study and exploration. The effect of residual stress relaxation under cycle loadings needs to be precisely modeled precisely. The effect of work hardening on fatigue performance had two aspects. Work hardening could increase the material yield strength, thereby delaying crack nucleation. However, increased brittleness could accelerate crack propagation. Thus, finding the effective control mechanism and method of work hardening is urgently needed to enhance the fatigue performance of machined components. The machining-induced metallurgical structure changes, such as white layer, grain refinement, dislocation, and martensitic transformation affect the fatigue performance of a workpiece significantly. However, the unified and exact conclusion needs to be investigated deeply. Finally, different surface integrity factors had complicated reciprocal effects on fatigue performance. As such, studying the comprehensive influence of surface integrity further and establishing the reliable prediction model of workpiece fatigue performance are meaningful for improving reliability of components and reducing test cost.


2012 ◽  
Vol 252 ◽  
pp. 319-322 ◽  
Author(s):  
Ning Fan ◽  
Pei Quan Guo ◽  
Xiu Li Fu

In nylon material manufacturing process, cutting temperature is key factor to nylon cutting properties. The glass transition temperature should be regarded as criteria for determining proper cutting parameters. The cutting temperatures variation of workpiece and chip with time under different rake angles are calculated by finite element method. It is shown that cutting temperature on workpiece surface is higher than that on chip and decreases quickly. The rake angle of cutting tool has great effects on workpiece cutting temperature. Thus the rake angle should be rationally selected to guarantee quality for manufacturing system.


Sign in / Sign up

Export Citation Format

Share Document