scholarly journals A Comparative Analysis of Air Pollution Levels During Times of International Uncertainty: The Financial Crisis of 2008 and the COVID-19 Pandemic of 2020

2021 ◽  
pp. 1-4
Author(s):  
Ammar Vora ◽  
Hillary Hale

During a crisis, economies stagnate as uncertainty grows about the future state of the world. The financial crisis of 2008 led to a severe recession where the global economy halted for approximately two years, causing unemployment and poverty [1]. Coronavirus disease 2019 (COVID-19), which attacks the respiratory system [2], was first identified in Wuhan, China, in late December of 2019. Within a matter of months, it spread globally causing economies to shut down. As distinct as the financial crisis of 2008 may seem from the COVID-19 pandemic lockdowns, both have had devastating effects on national economies and industrial production, resulting in an overall decrease in air pollutant emissions such as carbon dioxide (CO2) and nitrogen oxides (NOx). Therefore, parallels can be made between air pollution levels during each crisis. Given air pollution rates increased after the financial crisis of 2008 [3], it is likely air pollution will also rise in the aftermath of the COVID-19 pandemic. This study aims to support this argument by analyzing air pollution trends outlined in the results of several published papers.

Author(s):  
Zander S. Venter ◽  
Kristin Aunan ◽  
Sourangsu Chowdhury ◽  
Jos Lelieveld

AbstractThe lockdown response to COVID-19 has caused an unprecedented reduction in global economic activity. We test the hypothesis that this has reduced tropospheric and ground-level air pollution concentrations using satellite data and a network of >10,000 air quality stations. After accounting for the effects of meteorological variability, we find remarkable declines in ground-level nitrogen dioxide (NO2: −29 % with 95% confidence interval −44% to −13%), ozone (O3: −11%; −20% to −2%) and fine particulate matter (PM2.5: −9%; −28% to 10%) during the first two weeks of lockdown (n = 27 countries). These results are largely mirrored by satellite measures of the troposphere although long-distance transport of PM2.5 resulted in more heterogeneous changes relative to NO2. Pollutant anomalies were related to short-term health outcomes using empirical exposure-response functions. We estimate that there was a net total of 7400 (340 to 14600) premature deaths and 6600 (4900 to 7900) pediatric asthma cases avoided during two weeks post-lockdown. In China and India alone, the PM2.5-related avoided premature mortality was 1400 (1100 to 1700) and 5300 (1000 to 11700), respectively. Assuming that the lockdown-induced deviations in pollutant concentrations are maintained for the duration of 2020, we estimate 0.78 (0.09 to 1.5) million premature deaths and 1.6 (0.8 to 2) million pediatric asthma cases could be avoided globally. While the state of global lockdown is not sustainable, these findings illustrate the potential health benefits gained from reducing “business as usual” air pollutant emissions from economic activities. Explore trends here: www.covid-19-pollution.zsv.co.zaSignificance statementThe global response to the COVID-19 pandemic has resulted in unprecedented reductions in economic activity. We find that lockdown events have reduced air pollution levels by approximately 20% across 27 countries. The reduced air pollution levels come with a substantial health co-benefit in terms of avoided premature deaths and pediatric asthma cases that accompanied the COVID-19 containment measures.


Author(s):  
S. Bhadauriya ◽  
N. Chaudhary ◽  
S. Mamatha ◽  
S. S. Ray

Abstract. Punjab and Haryana are two major Rice-producing states of India. They generate high amount of rice residue every year and these residues are burnt in the months of October and November to clear the fields for the next sowing, i.e. Wheat. Residue burning in these two states is considered to be a major factor for the pollution conditions persisting in Delhi, the capital of the country, during October and November. In this study, we aim to analyse the role of stubble burning on Pollution. The approach aimed at a) Determination of rice straw contingent to open burning in the states of Punjab and Haryana, b) Determine and quantify the air pollutant emissions from rice residue contingent to open burning and c) Compare them with the air pollution of Delhi. Also, in order to analyse the various reasons for the increasing pollution in Delhi, Aerosol Parameters like Aerosol Optical Depth, Angstrom Exponent and Single Scattering Albedo were also studied along with auxiliary data like Temperature, Wind Directions, Wind Trajectories, MODIS Fire Counts and CPCB Pollution Data. In this study, we found that not only residue burnings of Punjab and Haryana, but also dust storms from far beyond these states influence the pollution levels in Delhi, especially in the case of Particulate Matter less than 10.


2021 ◽  
Vol 16 (12) ◽  
pp. 124001
Author(s):  
Liang Ma ◽  
Daniel J Graham ◽  
Marc E J Stettler

Abstract London introduced the world’s most stringent emissions zone, the Ultra Low Emission Zone (ULEZ), in April 2019 to reduce air pollutant emissions from road transport and accelerate compliance with the EU air quality standards. Combining meteorological normalisation, change point detection, and a regression discontinuity design with time as the forcing variable, we provide an ex-post causal analysis of air quality improvements attributable to the London ULEZ. We observe that the ULEZ caused only small improvements in air quality in the context of a longer-term downward trend in London’s air pollution levels. Structural changes in nitrogen dioxide (NO2) and ozone (O3) concentrations were detected at 70% and 24% of the (roadside and background) monitoring sites and amongst the sites that showed a response, the relative changes in air pollution ranged from −9% to 6% for NO2, −5% to 4% for O3, and −6% to 4% for particulate matter with an aerodynamic diameter less than 2.5 μm (PM2.5). Aggregating the responses across London, we find an average reduction of less than 3% for NO2 concentrations, and insignificant effects on O3 and PM2.5 concentrations. As other cities consider implementing similar schemes, this study implies that the ULEZ on its own is not an effective strategy in the sense that the marginal causal effects were small. On the other hand, the ULEZ is one of many policies implemented to tackle air pollution in London, and in combination these have led to improvements in air quality that are clearly observable. Thus, reducing air pollution requires a multi-faceted set of policies that aim to reduce emissions across sectors with coordination among local, regional and national government.


2018 ◽  
Vol 1 (6) ◽  
pp. 247-257
Author(s):  
Bang Quoc Ho ◽  
Tam Thoai Nguyen ◽  
Khue Hoang Ngoc Vu

Can Tho City is one the 5th largest city in Vietnam, with hight rate of economic growth and densely populated with 1,251,809 people, butsling traffic activities with 566,593 motobikes and 15,105 cars and hundreds of factories. The air in Can Tho city is polluted by dust and ozone. However, Can Tho city currently does not have a study on the simulation air pollution spread, therefore we do not have an overview on the status of air pollution in order to do not have solutions to limit the increase of pollution status of the city. The purpose of this study is to collect air pollutant emissions from other study. After that, TAPOM model is used to simulate the effects of ozone on the surrounding areas and study the ozone regime in Cantho city. The study results showed that the highest ozone concentration for an hour everage is 196 μg/m3. Compare with national technical regulation about ambient air QCVN 5:2013/BTNMT, ozone concentration is approximately at the allowable limit. The study of ozone regime had identified that VOC sensitive areas are Ninh Kieu district and a part in the south of Binh Thuy district, and NOx sensitive areas are the rested areas of Cantho city. The main cause contributing to increased VOC emission in the central area of the city is motorcycles, NOx emissions in the remaining areas of Cantho city are from the rice production factories. Proposals to protect the air quality in Cantho city are suggested.


2017 ◽  
Vol 17 (14) ◽  
pp. 9223-9236 ◽  
Author(s):  
Wolfgang Knorr ◽  
Frank Dentener ◽  
Jean-François Lamarque ◽  
Leiwen Jiang ◽  
Almut Arneth

Abstract. Wildfires pose a significant risk to human livelihoods and are a substantial health hazard due to emissions of toxic smoke. Previous studies have shown that climate change, increasing atmospheric CO2, and human demographic dynamics can lead to substantially altered wildfire risk in the future, with fire activity increasing in some regions and decreasing in others. The present study re-examines these results from the perspective of air pollution risk, focussing on emissions of airborne particulate matter (PM2. 5), combining an existing ensemble of simulations using a coupled fire–dynamic vegetation model with current observation-based estimates of wildfire emissions and simulations with a chemical transport model. Currently, wildfire PM2. 5 emissions exceed those from anthropogenic sources in large parts of the world. We further analyse two extreme sets of future wildfire emissions in a socio-economic, demographic climate change context and compare them to anthropogenic emission scenarios reflecting current and ambitious air pollution legislation. In most regions of the world, ambitious reductions of anthropogenic air pollutant emissions have the potential to limit mean annual pollutant PM2. 5 levels to comply with World Health Organization (WHO) air quality guidelines for PM2. 5. Worst-case future wildfire emissions are not likely to interfere with these annual goals, largely due to fire seasonality, as well as a tendency of wildfire sources to be situated in areas of intermediate population density, as opposed to anthropogenic sources that tend to be highest at the highest population densities. However, during the high-fire season, we find many regions where future PM2. 5 pollution levels can reach dangerous levels even for a scenario of aggressive reduction of anthropogenic emissions.


1988 ◽  
Vol 6 (6) ◽  
pp. 447-464
Author(s):  
Jan Vernon

Over the last decade, environmental concerns have played an increasing role in energy decision making, from siting of new energy facilities to national policy changes, such as Sweden's decision to phase out nuclear power. Concern about atmospheric pollution from fossil fuel combustion, reflected in increasingly strict emission limits, has imposed additional costs and technical demands on coal-fired plants. Estimates from the Federal Republic of Germany, the USA and the OECD indicate that air pollution control can account for a third of the capital costs for a new coal-fired power plant. This article outlines the current status of regulations on air pollutant emissions from coal-fired plants, describes action being taken to meet regulations and its potential impacts on coal utilisation. The article focuses on sulphur dioxide and nitrogen oxides, which have seen major recent developments in regulations and control methods.


2017 ◽  
Vol 10 (9) ◽  
pp. 3255-3276 ◽  
Author(s):  
Augustin Colette ◽  
Camilla Andersson ◽  
Astrid Manders ◽  
Kathleen Mar ◽  
Mihaela Mircea ◽  
...  

Abstract. The EURODELTA-Trends multi-model chemistry-transport experiment has been designed to facilitate a better understanding of the evolution of air pollution and its drivers for the period 1990–2010 in Europe. The main objective of the experiment is to assess the efficiency of air pollutant emissions mitigation measures in improving regional-scale air quality. The present paper formulates the main scientific questions and policy issues being addressed by the EURODELTA-Trends modelling experiment with an emphasis on how the design and technical features of the modelling experiment answer these questions. The experiment is designed in three tiers, with increasing degrees of computational demand in order to facilitate the participation of as many modelling teams as possible. The basic experiment consists of simulations for the years 1990, 2000, and 2010. Sensitivity analysis for the same three years using various combinations of (i) anthropogenic emissions, (ii) chemical boundary conditions, and (iii) meteorology complements it. The most demanding tier consists of two complete time series from 1990 to 2010, simulated using either time-varying emissions for corresponding years or constant emissions. Eight chemistry-transport models have contributed with calculation results to at least one experiment tier, and five models have – to date – completed the full set of simulations (and 21-year trend calculations have been performed by four models). The modelling results are publicly available for further use by the scientific community. The main expected outcomes are (i) an evaluation of the models' performances for the three reference years, (ii) an evaluation of the skill of the models in capturing observed air pollution trends for the 1990–2010 time period, (iii) attribution analyses of the respective role of driving factors (e.g. emissions, boundary conditions, meteorology), (iv) a dataset based on a multi-model approach, to provide more robust model results for use in impact studies related to human health, ecosystem, and radiative forcing.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Wen-jie Zou ◽  
Tai-Yu Lin ◽  
Yung-ho Chiu ◽  
Ting Teng ◽  
Kuei Ying Huang

Finding the balance between economic development and environmental protection is a major problem for many countries around the world. Air pollution caused by economic growth has caused serious damage to humans’ living environment, and as improving energy and resource efficiencies is the first priority, many countries are targeting to move towards a sustainable environment and economic development. This study uses the modified dynamic SBM (slack-based measure) model to explore the economic efficiency and air pollutants emission efficiency in Taiwan’s counties and cities from 2012 to 2015 by taking labor, motor vehicles, and electricity consumption as inputs and average disposable income as output. Particulate matter (PM2.5), nitrogen oxide emissions (NO2), and sulfur oxide emissions (SO2) are undesirable outputs, whereas factory fixed assets are a carry-over variable, and the results show the following: (1) the regions with the best overall efficiency between 2012 and 2015 include Taipei City, Keelung City, Hsinchu City, Chiayi City, and Taitung County; (2) in counties and cities with poor overall efficiency performance, the average disposable income per household has no significant relationship with air pollutant emissions; (3) in counties and cities where overall efficiency is poor, the average efficiency of each household’s disposable income is small; and (4) except for the five counties and cities with the best overall performance, the three air pollutants in the other fourteen counties and cities are high. Overall, the air pollution of most areas needs improvement.


2016 ◽  
Vol 113 (28) ◽  
pp. 7756-7761 ◽  
Author(s):  
Jun Liu ◽  
Denise L. Mauzerall ◽  
Qi Chen ◽  
Qiang Zhang ◽  
Yu Song ◽  
...  

As part of the 12th Five-Year Plan, the Chinese government has developed air pollution prevention and control plans for key regions with a focus on the power, transport, and industrial sectors. Here, we investigate the contribution of residential emissions to regional air pollution in highly polluted eastern China during the heating season, and find that dramatic improvements in air quality would also result from reduction in residential emissions. We use the Weather Research and Forecasting model coupled with Chemistry to evaluate potential residential emission controls in Beijing and in the Beijing, Tianjin, and Hebei (BTH) region. In January and February 2010, relative to the base case, eliminating residential emissions in Beijing reduced daily average surface PM2.5 (particulate mater with aerodynamic diameter equal or smaller than 2.5 micrometer) concentrations by 14 ± 7 μg⋅m−3 (22 ± 6% of a baseline concentration of 67 ± 41 μg⋅m−3; mean ± SD). Eliminating residential emissions in the BTH region reduced concentrations by 28 ± 19 μg⋅m−3 (40 ± 9% of 67 ± 41 μg⋅m−3), 44 ± 27 μg⋅m−3 (43 ± 10% of 99 ± 54 μg⋅m−3), and 25 ± 14 μg⋅m−3 (35 ± 8% of 70 ± 35 μg⋅m−3) in Beijing, Tianjin, and Hebei provinces, respectively. Annually, elimination of residential sources in the BTH region reduced emissions of primary PM2.5 by 32%, compared with 5%, 6%, and 58% achieved by eliminating emissions from the transportation, power, and industry sectors, respectively. We also find air quality in Beijing would benefit substantially from reductions in residential emissions from regional controls in Tianjin and Hebei, indicating the value of policies at the regional level.


Sign in / Sign up

Export Citation Format

Share Document