scholarly journals Primary Productivity of Kumshi Reservoir, Kalaburagi District, Karnataka

2015 ◽  
Vol 44 ◽  
pp. 53-58
Author(s):  
Shaik Fameeda ◽  
M. Rajashekhar ◽  
Zeba Parveen ◽  
K. Vijaykumar

In the present investigation, primary productivity of Kumshi reservoir of Kalburagi District has been studied for the period of two years (2012-2014). The results reveals that, gross primary productivity of Kumshi reservoir followed an increasing trend through the northeast monsoon season towards summer season, whereas, net primary productivity of Kumshi reservoir is followed a more or less similar trend of increasing towards northeast monsoon season and summer season, while community respiration of reservoir also followed a similar trend of oscillation increasing trend towards summer and northeast monsoon season during the study period.

2013 ◽  
Vol 3 (1) ◽  
pp. 38-44
Author(s):  
Purna Bahadur Chhetri ◽  
Damodar Thapa Chhetry

The physico-chemical parameters and primary productivity of a fish pond of Madhumara, Biratnagar was studied from October 2007 to September 2008. The maximum air and water temperature and water transparency were recorded in rainy season, whereas maximum pH, dissolved oxygen and chloride were recorded in winter season.  Free carbon dioxide and total hardness were maximum in summer season. The gross primary productivity, net primary productivity and community respiration were found maximum in winter season.


2021 ◽  
Vol 21 (No 1) ◽  
Author(s):  
Sonam Sharma ◽  
V.K. Yadav

The primary productivity of the Mahil pond has been estimated from March 2017 to February 2018 at four different stations. Various physicochemical parameters and phytoplankton were studied. The seasonal variation of primary productivity revealed that maximum and minimum values of Gross primary productivity and community respiration were associated with rainy and summer seasons respectively. The minimum values of Net primary productivity were recorded during rainy season and maximum during winterfor different study stations.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhe Yuan ◽  
Yongqiang Wang ◽  
Jijun Xu ◽  
Zhiguang Wu

AbstractThe ecosystem of the Source Region of Yangtze River (SRYR) is highly susceptible to climate change. In this study, the spatial–temporal variation of NPP from 2000 to 2014 was analyzed, using outputs of Carnegie–Ames–Stanford Approach model. Then the correlation characteristics of NPP and climatic factors were evaluated. The results indicate that: (1) The average NPP in the SRYR is 100.0 gC/m2 from 2000 to 2014, and it shows an increasing trend from northwest to southeast. The responses of NPP to altitude varied among the regions with the altitude below 3500 m, between 3500 to 4500 m and above 4500 m, which could be attributed to the altitude associated variations of climatic factors and vegetation types; (2) The total NPP of SRYR increased by 0.18 TgC per year in the context of the warmer and wetter climate during 2000–2014. The NPP was significantly and positively correlated with annual temperature and precipitation at interannual time scales. Temperature in February, March, May and September make greater contribution to NPP than that in other months. And precipitation in July played a more crucial role in influencing NPP than that in other months; (3) Climatic factors caused the NPP to increase in most of the SRYR. Impacts of human activities were concentrated mainly in downstream region and is the primary reason for declines in NPP.


1985 ◽  
Vol 36 (6) ◽  
pp. 873 ◽  
Author(s):  
BC Chaessman

Diel oxygen-curve techniques were used to estimate gross primary productivity (PG), community respiration and net daily metabolism (NDM) for five reaches of the La Trobe River from headwaters to lowlands. All reaches were heterotrophic throughout the study (December 1980-November 1981) with NDM ranging from - 1 to -6 g O2 m-2. PG was consistently very low at the most upstream station and highest in the middle reaches of the river, where both benthic and planktonic contributions were important. At the most downstream station benthic productivity was negligible but planktonic productivity was appreciable in spring and autumn. PG in the river may be limited in the upper reaches by lack of light (due to shading by vegetation) and low levels of nutrients, and in the lower reaches by turbidity and increased depth.


2022 ◽  
Vol 964 (1) ◽  
pp. 012011
Author(s):  
Nguyen Trinh Duc Hieu ◽  
Nguyen Huu Huan ◽  
Tran Thi Van ◽  
Nguyen Phuong Lien

Abstract Primary production (PP) of phytoplankton plays an essential role in food web dynamics, biogeochemical cycles and marine fisheries. It is used as one of the basic information for evaluating marine ecosystems. In this paper, monthly composite PP data on a 4 km x 4 km grid for the period 2003-2020 was used to evaluate the distributional characteristics of PP in the coastal marine area of Vietnam South Centre. The statistical results show that the climatological average of PP in 18 years reached 449.2 mgC/m2/day, ranged from 272.1 to 14,205.4 mgC/m2/day. The PP has seasonal and spatial variations. In time, the lowest value of PP was in spring, and the highest was in winter; in space, PP tended to decrease from shore to offshore, PP was higher in coastal areas than in the open sea areas. During the northeast monsoon season, PP increased by more than 1000 mgC/m2/day in the coastal area. Meanwhile, in the southwest monsoon season, due to the ecological influence of the upwelling phenomenon, PP increased with a value greater than 1500 mgC/m2/day, distributed along the coastline of Ninh Thuan - Binh Thuan. Primary productivity positively correlated with chlorophyll content but negatively correlated with sea surface temperature with correlation coefficients of 0.9 and -0.6, respectively. There was a weak correlation between PP and ONI with correlation coefficients of -0.23. The temporal-spatial variation of PP was affected by the ENSO (El Niño-Southern Oscillation) phenomenon, the positive phase of ENSO (El Niño conditions) corresponded to lower PP, and the negative phase of ENSO (La Niña conditions) corresponded to higher PP. The research results from this paper can be used as a reference in marine ecosystem management.


Land ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 365
Author(s):  
Xiao Hu ◽  
Yujie He ◽  
Ze Kong ◽  
Jiang Zhang ◽  
Minshu Yuan ◽  
...  

Few studies have focused on the combined impact of climate change, CO2, and land-use cover change (LUCC), especially the evaluation of the impact of LUCC on net primary productivity (NPP) in the future. In this study, we simulated the overall NPP change trend from 2010 to 2100 and its response to climatic factors, CO2 concentration, and LUCC conditions under three typical emission scenarios (Representative Concentration Pathway RCP2.6, RCP4.5, and RCP8.5). (1) Under the predicted global pattern, NPP showed an increasing trend, with the most prominent variation at the end of the century. The increasing trend is mainly caused by the positive effect of CO2 on NPP. However, the increasing trend of LUCC has only a small positive effect. (2) Under the RCP 8.5 scenario, from 2090 to 2100, CO2 has the most significant positive impact on tropical areas, reaching 8.328 Pg C Yr−1. Under the same conditions, climate change has the greatest positive impact on the northern high latitudes (1.175 Pg C Yr−1), but it has the greatest negative impact on tropical areas, reaching −4.842 Pg C Yr−1. (3) The average contribution rate of LUCC to NPP was 6.14%. Under the RCP8.5 scenario, LUCC made the largest positive contribution on NPP (0.542 Pg C Yr−1) globally from 2010 to 2020.


2021 ◽  
Vol 13 (3) ◽  
pp. 400
Author(s):  
Helin Zhang ◽  
Rui Sun ◽  
Dailiang Peng ◽  
Xiaohua Yang ◽  
Yan Wang ◽  
...  

The rapid urbanization process has threatened the ecological environment. Net primary productivity (NPP) can effectively indicate vegetation growth status in an urban area. In this paper, we evaluated the change in NPP in China and China’s urban lands and assessed the impact of temperature, precipitation, the sunshine duration, and vegetation loss due to urban expansion on NPP in China’s three fast-growing urban agglomerations and their buffer zones (~5–20 km). The results indicated that the NPP in China exhibited an increasing trend. In contrast, the NPP in China’s urban lands showed a decreasing trend. However, after 1997, China’s increasing trend in NPP slowed (from 9.59 Tg C/yr to 8.71 Tg C/yr), while the decreasing trend in NPP in China’s urban lands weakened. Moreover, we found that the NPP in the Beijing–Tianjin–Hebei urban agglomeration (BTHUA), the Yangtze River Delta urban agglomeration (YRDUA), and the Pearl River Delta urban agglomeration (PRDUA) showed a decreasing trend. The NPP in the BTHUA showed an increasing trend in the buffer zones, which was positively affected by temperature and sunshine duration. Additionally, nonsignificant vegetation loss could promote the increase of NPP. In the YRDUA, the increasing temperature was the main factor that promoted the increase of NPP. The effect of temperature on NPP could almost offset the inhibition of vegetation reduction on the increase of NPP as the buffer zone expanded. In PRDUA, sunshine duration and vegetation loss were the main factors decreasing NPP. Our results will support future urban NPP prediction and government policymaking.


2018 ◽  
Vol 1 (4) ◽  
Author(s):  
Sujeet Kumar ◽  
Shakti Suryavanshi

A trend analysis was performed for historic (1901-2002) climatic variables (Rainfall, Maximum Temperature and Minimum Temperature) of Uttarakhand State located in Northern India. In the serially independent climatic variables, Mann-Kendall test (MK test) was applied to the original sample data. However, in the serially correlated series, prewhitening is utilized before employing the MK test. The results of this study indicated a declining trend of rainfall in monsoon season for seven out of thirteen districts of Uttarakhand state. However, an increasing trend was observed in Haridwar and Udhamsingh Nagar districts for summer season rainfall. For maximum and minimum temperature, a few districts exhibited a declining trend in monsoon season whereas many districts exhibited an increasing trend in winter and summer season. Mountain dominated areas (as Uttarakhand state) are specific ecosystems, distinguished by their diversity, sensitivity and intricacy. Thus the variability of rainfall and temperature has a severe and rapid impact on mountainous ecosystems. Nevertheless, mountains have significant impacts on hydrology, which may further threaten populations living in the mountain areas as well as in adjacent, lowland regions.


Sign in / Sign up

Export Citation Format

Share Document