scholarly journals Leakage Compositional Changes Accompanying Exposure some Mango Cultivars to Low Temperature under Vitro Conditions

2020 ◽  
Vol 10 ◽  
pp. 46-62
Author(s):  
Ali A.S. Sayed ◽  
Farouk M. Gadallah ◽  
Mohamed A. Seif El-Yazal ◽  
Gamal A. Abdel-Samad

Under in vivo conditions (ambient-air temperature), the relationship between low temperature stress and the response of some different mango cultivars was monitored.Some biochemical events that occur following cold exposure of mango trees leaves were detected to evaluate their ability to acquire cold injury during exposure to low temperature. The cultivars of Alphonso, Baladi, Bullock's Heart, Helmand, Hindi Besennara, Mabrouka, Mestekawy, Nabeeh, Oweisi, Spates, Taimour and Zebdawhich grown in private orchard in Fayoum Governorate, Egypt were selected to verify this aim. This study was carried out during the period from November to March of during years; 2012 and 2013. The following results were stated: the detected leaf compositional changes were significantly differed among the tested cultivars and sampling times. In this respect, electrolytes (%), Na+, K+, inorganic phosphate (Pi), Ca2+, total soluble sugars (TSS) and total free amino acids (TFAA) concentrations were detected in leachate of fresh leaves and showed significant differences in response to the cultivars and sampling times. However, in this study, Alphonso, Bullock's Heart, Helmand, Taimour and Zebda cultivars of mango had the best result in their cold tolerance under the conditions of this study, which is not exactly in consistent with what the researcher found.

2020 ◽  
Vol 10 ◽  
pp. 30-45
Author(s):  
Ali A.S. Sayed ◽  
Farouk M. Gadallah ◽  
Mohamed A. Seif El-Yazal ◽  
Gamal A. Abdel-Samad

This experiment was conducted to found the connection between low temperature stress in vivo conditions (ambient-air temperature) and the changes in some physiological and biochemical events (leaf pigments and chlorophyll fluorescence) of mango trees in response to exposure to natural low temperature (cold). To verify this objective, 12 popular commonly mango cultivars (25 years old) which grown in private orchard in Fayoum Governorate, Egypt were selected for this study which carried out during the period from November to March of years; 2012 and 2013. The selected cultivars were: Alphonso, Baladi, Bullock's Heart, Helmand, Hindi Besennara, Mabrouka, Mestekawy, Nabeeh, Oweisi, Spates, Taimour and Zebda. Based on the obtained results, it can be stated that, chlorophyll (a) concentration in the leaves was significantly differed among the cultivars throughout the whole sampling times, in this respect, Helmand one gave the highest one while, and the highest one by sampling times was November one. The concentration of chlorophyll (b) was significant as effected by the effect of cultivars and sampling time recorded the highest value by the cultivar of Spates and December sample, respectively. Total chlorophyll concentration in the leaves reached its peak by the cultivar of Nabeeh and sampling time of December as compared to others. The both of Ewais cultivar and the sample of March showed the highest values of carotenoids concentration in the leaves. The levels of anthocyanin in leaves were significantly differed as affected by the cultivars and sampling times, indicating that the cultivar of Helmand and November sample recorded the highest values of anthocyanin in leaves. The greatest reductions in Fv/Fmratio were recorded at month of November and indicated that the reductions were in the order of Alphonso˃ Mabrouka˃Taimour˃ others. The effect of sampling time, cultivars and their interaction on Fv/Fm were significant, but small between some values of Fv/Fm.


Plants ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 588
Author(s):  
Hira Yaqoob ◽  
Nudrat A. Akram ◽  
Samrah Iftikhar ◽  
Muhammad Ashraf ◽  
Noman Khalid ◽  
...  

In the current study, the effects of exogenously applied proline (25 and 50 mM) and low-temperature treatment were examined on the physiochemical parameters in the plants of two cultivars (V1 and V2) of quinoa (Chenopodium quinoa Willd.). The seeds were also exposed to chilling stress at 4 °C before sowing. Plants raised from the seeds treated with low temperature showed reduced plant growth and contents of chlorophyll and carotenoids, but they had significantly increased contents of malondialdehyde, proline, ascorbic acid, total free amino acids, total soluble sugars, and total phenolics, as well as the activity of the peroxidase (POD) enzyme. Cold stress applied to seeds remained almost ineffective in terms of bringing about changes in plant root, hydrogen peroxide, glycine betaine and activities of superoxide dismutase (SOD), and catalase (CAT) enzymes. The exogenous application of proline significantly increased plant growth, the contents of chlorophyll, carotenoids, proline, ascorbic acid, total free amino acids, phenolics, and total soluble sugars, as well as the activities of SOD, POD, and CAT, but it decreased malondialdehyde content. Overall, foliar application of proline was better than the seed treatment in improving root dry weight, root length, chlorophyll a, carotenoids, glycine betaine, ascorbic acid and superoxide dismutase activity, whereas seed pre-treatment with proline was effective in improving shoot dry weight, shoot length, hydrogen peroxide, malondialdehyde, and peroxidase activity in both quinoa cultivars.


2011 ◽  
Vol 29 (No. 1) ◽  
pp. 79-86 ◽  
Author(s):  
Yu-H. Tseng ◽  
J.-H. Yang ◽  
Ch.-E. Lee ◽  
J.-L. Mau

Shiitake [Lentinula edodes (Berk.) Pegler] stipe was incorporated into steamed bun. Quality attributes including the specific volume, colour and sensory evaluation, and taste components in shiitake stipe steamed buns were analysed and compared with those of white steamed buns. With 2% and 5% additions of shiitake stipe flour, specific volumes of steamed buns increased by 5.8% and 5.0%, respectively. White steamed buns contained more reducing sugar, fat, and protein whereas fiber and soluble polysaccharide contents were higher in shiitake stipe steamed buns. Furthermore, shiitake stipe steamed buns contained more total soluble sugars and total free amino acids. Shiitake stipe steamed buns showed lower lightness and whiteness index values and became browner with more shiitake stipe flour added. On a seven-point hedonic scale, all sensory results were 4.07–5.80. Overall, shiitake stipe could be added into steamed bun formula to provide its beneficial health effects.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9224 ◽  
Author(s):  
Libia Iris Trejo-Téllez ◽  
Atonaltzin García-Jiménez ◽  
Hugo Fernando Escobar-Sepúlveda ◽  
Sara Monzerrat Ramírez-Olvera ◽  
Jericó Jabín Bello-Bello ◽  
...  

Background Silicon (Si) is a beneficial element that has been proven to influence plant responses including growth, development and metabolism in a hormetic manner. Methods In the present study, we evaluated the effect of Si on the growth and concentrations of chlorophylls, total amino acids, and total sugars of pepper plants (Capsicum annuum L.) during the early developmental stage in a hydroponic system under conventional (unstressed) conditions. We tested four Si concentrations (applied as calcium silicate): 0, 60, 125 and 250 mg L−1, and growth variables were measured 7, 14, 21 and 28 days after treatment (dat), while biochemical variables were recorded at the end of the experiment, 28 dat. Results The application of 125 mg L−1 Si improved leaf area, fresh and dry biomass weight in leaves and stems, total soluble sugars, and concentrations of chlorophylls a and b in both leaves and stems. The amino acids concentration in leaves and roots, as well as the stem diameter were the highest in plants treated with 60 mg L−1 Si. Nevertheless, Si applications reduced root length, stem diameter and total free amino acids in leaves and stems, especially when applied at the highest concentration (i.e., 250 mg L−1 Si). Conclusion The application of Si has positive effects on pepper plants during the early developmental stage, including stimulation of growth, as well as increased concentrations of chlorophylls, total free amino acids and total soluble sugars. In general, most benefits from Si applications were observed in the range of 60–125 mg L−1 Si, while some negative effects were observed at the highest concentration applied (i.e., 250 mg L−1 Si). Therefore, pepper is a good candidate crop to benefit from Si application during the early developmental stage under unstressed conditions.


2021 ◽  
Vol 12 (2) ◽  
pp. 57-67
Author(s):  
Ediglécia Pereira de Almeida ◽  
Antonio Lucineudo de Oliveira Freire ◽  
Ivonete Alves Bakke ◽  
Cheila Deisy Ferreira ◽  
George Martins de França ◽  
...  

Drought stress negatively influences a variety of essential physiological process for plant growth and biomass production, and potassium contributes to the absorption of water and maintaining cell turgor, being crucial to understand the seedlings water stress responses. This research aimed to verify the effects to water deficiency and potassium on the growth and accumulation of organic solutes in Myracrodruon urundeuva, Libidibia ferrea, and Mimosa tenuiflora. The treatments were distributed in a 3 x 3 factorial scheme, with three water levels (100%pc - control, 50%pc - moderate water deficit, and 25%pc - severe water deficit) and three doses of potassium (0, 97.5 and 195 mg dm-3 K). The plants were sown in black plastic bags, containing 5 kg of soil. Were evaluated plant height, stem diameter, and leaf concentrations of total soluble sugars, total free amino acids, and proteins. The water deficit caused a reduction in the growth of M. urundeuva and M. tenuiflora plants, regardless of the added potassium. The plants of M. urundeuva and M.  tenuiflora were not demanding in potassium, while potassium fertilization with 97.5 mg dm-3 K favored L. ferrea plants, especially when kept under moderate water deficit. The moderate water deficit promoted accumulation of total free amino acids and soluble proteins in M. urundeuva, while in L. ferrea there was accumulation of total free amino acids under severe water deficit. Increase in the potassium promoted reduction in the concentrations of total soluble sugars and soluble proteins.


2017 ◽  
Vol 14 (3) ◽  
pp. 887-891
Author(s):  
Nagendram Erram ◽  
Anil Gaddameedi ◽  
Swapna Siddamalla ◽  
Tumu Venkat Reddy ◽  
Manjula Bhanoori

ABSTRACT: In the present investigation, Maize seeds of hybrid NK 6240 and 900M Gold were exposed to UV-B (280-320 nm) for periods of 40 and 60 minutes and compared with the control without exposer to UV-B. The biochemical changes associated with UV-B induced resistance were investigated by determination of proline concentration, total soluble sugars, total soluble protein, malondialdehyde content and free amino acids from leaves and roots. Also comparison for germination percentage between control and treated seeds was carried along with biochemical traits. Analysis of variance explains both the hybrids were significantly different in germination percentage, total soluble sugars, proline and free amino acids. Whereas both treatments showed high significant variation for all the studied traits, but genotype × treatment interaction was non-significant for all the traits. 40 minutes UV-B treated seeds showed reduced total soluble sugars and increased malondialdehyde, proline and total soluble protein content. In 60 minutes UV-B treatment, decrease in free amino acids, proline, percentage of germination, and total soluble protein and increase in total soluble sugars was observed.


2018 ◽  
Vol 10 (12) ◽  
pp. 543 ◽  
Author(s):  
Alia Riffat ◽  
Muhammad Sajid Aqeel Ahmad

Mineral nutrients have favourable potential in alleviation of salinity problem in plants. Sulfur has specific functions in regulating plant growth, metabolism, enzymatic reactions and osmolyte homeostasis in plants. Hence, an experiment was carried out to explore the role of sulfur in ameliorating salt toxicity in maize by changes in organic and inorganic osmolyte contents. A range of sulfur levels (40, 80 mM) were used to induce salinity tolerance in maize. Various treatments of salinity (25, 75 mM) were applied by using sodium chloride. Results revealed that glycine betaine, proline, total soluble sugars, total soluble proteins and total free amino acids contents were increased by applying salinity while the application of sulfur lowered the proline and increased other studied organic osmolyte contents in all studied maize organs (leaf, shoot, root). The maximum improvement in organic osmolyte contents were found at 40 mM sulfur, however, at 80 mM sulfur proline contents were reduced. Applied salinity increased leaf tissue concentration of Na+ and decreased that of K+, Ca2+, NO3-, PO43-, SO42- leading to a severely declined in K+/Na and Ca2+/Na+ ratio. However, application of sulfur reduced the Na+ contents and improved K+, Ca2+, NO3-, PO43-, SO42-, K+/Na+ and Ca2+/Na+ ratio in the salinity grown plants. Moreover, 40 mM level of sulfur was greatly effective in osmolyte homeostasis at all levels of salinity. This indicated that use of sulfur (40 mM) ameliorated the effect of salinity by changing organic and inorganic osmolyte contents in maize plants.


1968 ◽  
Vol 46 (12) ◽  
pp. 1479-1486 ◽  
Author(s):  
P. V. Sane ◽  
Saul Zalik

Amino acids and total soluble sugars in the embryo and endosperm of etiolated seedlings of Gateway barley and its mutant were compared over a 10-day period. The endosperm of the mutant had a lower reserve of protein but the levels of protein and free glycine, which is the nitrogenous precursor of chlorophyll, were similar in the embryos of both lines. Thus the low reserve of nitrogen in the mutant seed was not responsible for its virescent character. Based upon the changes in the amounts of endogenous amino acids it appeared that the free amino acids were direct precursors of protein. The content of total soluble sugars was similar in both lines. Shoots of light-grown seedlings of the mutant accumulated considerably more malate than those of the normal line. Although there was special interest in determining the amount of succinate at different stages of seedling development, none was detectable until the 10th day.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 848F-848
Author(s):  
C.L. Haynes ◽  
O.M. Lindstrom ◽  
M.A. Dirr

Decreasing photoperiods and decreasing temperatures induce cold acclimation and the accumulation of soluble sugars in many plants. Two cultivars of southern magnolia differing in cold hardiness and acclimation patterns, were monitored to determine photoperiod × temperature interaction on cold hardiness and soluble sugar content. Cold hardiness increased with low temperatures and short photoperiods. Total soluble sugars, sucrose, and raffinose consistently increased in the leaves and stems of both cultivars in response primarily to low temperature. `Little Gem' was less responsive to photoperiod than `Claudia Wannamaker'


Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1573
Author(s):  
Marija Marković ◽  
Milana Trifunović Momčilov ◽  
Branka Uzelac ◽  
Olga Radulović ◽  
Snežana Milošević ◽  
...  

The bulb is the main propagation organ of snake’s head fritillary (Fritillaria meleagris L.), a horticulturally attractive and rare geophyte plant species. In this study, we investigated the effect of soaking bulbs in GA3 solution (1, 2, and 3 mg L−1) combined with low-temperature treatment (7 °C) on breaking the dormancy of in vitro bulbs. Sugar status (total soluble sugars, glucose, and fructose content) was analyzed in different parts of the sprouted bulbs. The results showed that the soluble sugar concentration was highest in bulbs soaked in GA3. The main sugar in fritillary bulbs was glucose, while fructose content was much lower. Glucose concentration dramatically increased after bulb chilling (7 °C), and its accumulation was predominantly detected in the lower sprout portion during the first weeks of sprouting. Sugar concentration was significantly lower in nonchilled bulbs, which indicates the importance of low temperature in bulb development and sprouting.


Sign in / Sign up

Export Citation Format

Share Document