scholarly journals Multivariate Analysis and Contamination Studies of Elemental Profile in Ife/Ijesa Goldmine Tailings, Southwestern, Nigeria

2018 ◽  
Vol 2 ◽  
pp. 35-43
Author(s):  
Abiodun O. Fatoye ◽  
Albert O. Adebayo ◽  
Wasiu B. Tomori

The concentration of metals in the tailings of Ife/Ijesa goldmine, Nigeria was identified by using Proton Induced X-Ray Emission spectrometry as the main analytical tools. A total of 75 samples of the tailings were collected. Correlation, principal component and cluster analyses suggested probable natural and anthropogenic sources of the metals in the tailings. The contamination level of heavy metals was assessed on the basis of geo-accumulation index (), and ecological risk. The analysis of revealed moderately-heavily to heavily extremely contaminated. The value of showed a low level of heavy metals except Cu which shows considerable contamination.

2013 ◽  
Vol 779-780 ◽  
pp. 1260-1265 ◽  
Author(s):  
Zhi Ling Hao ◽  
Feng Wang ◽  
Hai Zhen Yang

Heavy metal contents (Cr, Ni, Cu, Zn, As, Cd, Hg, Pb) have been measured in 40 surface soils on Ny-Alesund, Spitsbergen Island, Arctic, which were in concentrations (in milligrams kilogram1) of 13.3-127 (Cr), 1.72-38.8 (Ni), 7.84-47.3 (Cu), 26.5-123 (Zn), 2.17-9.22 (As), 0-2.4 (Cd), 0.21-0.38 (Hg), 0-129 (Pb). Relative cumulative sums analysis and relative cumulative frequency analysis were used to determine the baseline values for the 8 metals, yielding values of Cr (24.7 mg/kg), Ni (6.24 mg/kg) , Cu (11.5 mg/kg) , Zn (77.3 mg/kg) , As (2.60 mg/kg) , Hg (0.27 mg/kg) , Pb (4.38mg/kg). Geo-accumulation index method was applied in order to determine the extent of anthropogenic contamination. Principal component analysis was put into use aiming to identify the sources of these heavy metals. The results showed that Pb, Cr, Cd and Hg have been significantly elevated in concentration by human activities.


Author(s):  
Muhammad Irfan Ahamad ◽  
Jinxi Song ◽  
Haotian Sun ◽  
Xinxin Wang ◽  
Muhammad Sajid Mehmood ◽  
...  

The sediment pollution caused by different metals has attracted a great deal of attention because of the toxicity, persistence, and bio-accumulation. This study focuses on heavy metals in the hyporheic sediment of the Weihe River, China. Contamination levels of metals were examined by using “geo-accumulation index, enrichment factor, and contamination factor” while ecological risk of metals were determined by “potential ecological risk and risk index”. The pollutant accumulation of metals ranked as follows: “manganese (Mn)   >   chromium (Cr)   >   zinc (Zn)   > copper (Cu)   >   nickel (Ni)   >   arsenic (As)   >   lead (Pb)”. The geo-accumulation index identified arsenic as class 1 (uncontaminated to moderate contamination), whereas Cu, Cr, Ni, Zn, Pb, and Mn were classified as class 0 (uncontaminated). According to the enrichment factor, arsenic originated through anthropogenic activities and Cr, Ni, Cu, Zn, and Pb were mainly controlled by natural sources. The contamination factor elucidated that sediments were moderately polluted by (As, Cr, Cu, Zn, Mn, and Pb), whereas Ni slightly contaminated the sediments of the Weihe River. All metals posed a low ecological risk in the study area. The risk index revealed that contribution of arsenic (53.43 %) was higher than half of the total risk.


Author(s):  
Defri Yona ◽  
Syarifah Hikmah Julinda Sari ◽  
Anedathama Kretarta ◽  
Citra Ravena Putri Effendy ◽  
Misba Nur Aini ◽  
...  

This study attempted to analyze the distribution and contamination status of heavy metals (Cu, Fe and Zn) along western coast of Bali Strait in Banyuwangi, East Java. Bali Strait is one of the many straits in Indonesia with high fisheries activities that could potentially contributed to high heavy metal pollution. There were five sampling areas from the north to south: Pantai Watu Dodol, Pantai Kalipuro, Ketapang Port, Pantai Boom and Muncar as the fish landing area. Heavy metal pollution in these locations comes from many different activities such as tourism, fish capture and fish industry and also domestic activities. Contamination factor (CF), geo-accumulation index (Igeo) and enrichment factor (EF) of each heavy metal were calculated to obtain contamination status of the research area. The concentrations of Fe were observed the highest (1.5-129.9 mg/kg) followed by Zn (13.2-23.5 mg/kg) and Cu (2.2-7.8 mg/kg). The distribution of Cu, Fe and Zn showed variability among the sampling locations in which high concentrations of Cu and Zn were higher in Ketapang Port, whereas high concentration of Fe was high in almost all sampling locations. According to the pollution index, contamination factors of Cu, Fe and Zn were low (CF < 1 and Igeo < 1). However, high index of EF (> 50) showed high influence of the anthropogenic activities to the contribution of the metals to the environment. This could also because of the high background value used in the calculation of the index due to the difficulties in finding background value from the sampling areas.Keywords: heavy metals, pollution index, contamination factor, geo-accumulation index, Bali Strait


2019 ◽  
Vol 12 (3) ◽  
pp. 733-736 ◽  
Author(s):  
Vinod Jena ◽  
Sanjay Ghosh ◽  
Aditi Pande ◽  
Kresimir Maldini ◽  
Natalija Matic

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jin Wei ◽  
Maoqing Duan ◽  
Yiping Li ◽  
Amechi S. Nwankwegu ◽  
Yong Ji ◽  
...  

Abstract Surface sediment samples were collected from four areas (the Jingdezhen Industrialized Area (JDZ), Upstream (UP), the Dexing Mining Area (DX), and Downstream (DM)) to investigate the concentration and chemical composition of heavy metals. The sediments were analysed for Cu, Zn, Pb, Cd, Cr, As, and Ni using a sequential extraction scheme according to the improved BCR (European Community Bureau of Reference) method. The obtained results show that the maximum values of Cu (793.52 μg·g−1), Zn (72.09 μg·g−1), Pb (222.19 μg·g−1), and Cd (1.60 μg·g−1) were collected from the DX sampling area, while the JDZ area had the highest concentrations of Cr (97.09 μg·g−1), As (318.05 μg·g−1), and Ni (66.35 μg·g−1). The majority of metal values far exceeded their corresponding background values. The risk analysis of geo-accumulation index (Igeo) indicated that the heavy metals Cu and As were the main pollution factors and each element of the pollution degree followed the order of: Cu > As > Pb > Cd > Cr > Zn. Metal partitioning characteristics were also considered and more than 80% of metals show potential bioavailability and toxic effects.


Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 431
Author(s):  
Liangliang Huang ◽  
Saeed Rad ◽  
Li Xu ◽  
Liangying Gui ◽  
Xiaohong Song ◽  
...  

This research has focused on the source identification, concentration, and ecological risk assessment of eight heavy metals in the largest karst wetland (Huixian) of south China. Numerous samples from superficial soil and sediment within ten representative landuse types were collected and examined, and the results were analyzed using multiple methods. Single pollution index (Pi) results were underpinned by the Geoaccumulation index (Igeo) method, in which Cd was observed as the priority pollutant with the highest contamination degree in this area. As for the most polluted landuse type, via applying Nemerow’s synthetical contamination index (PN) and Potential ecological risk index (RI), the river and rape field posed the highest ecological risks, while moderate for the rest. To quantify the drivers of the contaminants, a principal component analysis (PCA) was carried out and weathering of the watershed’s parent carbonate rocks was found to be the main possible origin, followed by anthropogenic sources induced by agricultural fertilizer. Considering the impacts of these potentially toxic elements on public health, the results of this study are essential to take preventive actions for environmental protection and sustainable development in the region.


2019 ◽  
Vol 138 ◽  
pp. 291-300 ◽  
Author(s):  
Salman Ahmed ◽  
Shadab Khurshid ◽  
Fazil Qureshi ◽  
Athar Hussain ◽  
Ayushman Bhattacharya

Author(s):  
Abinotami Williams Ebuete ◽  
Andy Etta Bisong ◽  
Okereke Chukuma ◽  
Lucky E. Ndiwari ◽  
Ibim Yarwamara Ebuete

The Kolo Creek is an inland water body in the Niger Delta receiving organic and chemical wastes arising from anthropogenic activities within the catchment area. This study was therefore carried out to investigate the spatial variabilities of heavy metals in surface and sediment and their geochemical factors that influence their presence along the Kolo Creek in 2018 using Geo-accumulation index and pollution load index to extrapolate the level of heavy metal contraction in the two medium. Sediment and Water samples were collected for five (5) months and assessed from eight sampling points (A-h) for seven (7) heavy metals such as  Copper (Cu), Lead (Pb), Iron(Fe), Camium (Cd), Manganese (Mn), Nickel (Ni) and Mercury (Hg). All the heavy metals had geo-accumulation indices below zero which indicates no pollution except Fe which had geo-accumulation index in the range 3.327 in surface water and 7.751 in sediment, furthermore, the pollution load index revealed a toxicity of 0.664 times in surface water as against 1.501 times in sediment exceeding the background concentration in the Kolo Creek. Hence, poor ecological ethics and culture should be discouraged to keep the Kolo Creek water under check for safe domestic water use.


Author(s):  
Yebpella G.G ◽  
Magomya A.M ◽  
Hikon B.N ◽  
Joshua Y ◽  
Gani J

Heavy metals accumulation in biological system are by inhalation of contaminated air, intake of contaminated food or drinking water has been considered to be an ecological menace to man and other organisms. This study was carried out to ascertain the pollution status of Cr, Pb, Zn, Cu and Cd in sediment of Akata Lake, Katsina- Ala Benue State, Nigeria. Sediment samples were collected, digested using 30% H2O2 followed by 0.5M HCl and the metal concentrations were determined with Varian AA240 Atomic absorption spectrophotometer equipped with Zeeman’s background correction (Varian, New Jersey, USA). The mean level of the heavy metals, Pb, Zn, Cu, Cd and Cr are 31.05, 2.72, 19.22 and 0.88 mg/kg while the concentration of Cr was below the detection limit of the instrument. The values obtained were compared with the established soil and sediment standard by World Health Organization (WHO). The contamination factors value for Zn, Cu and Cd are <1 while that of Pb is >1, hence it shows that the sediment is polluted by lead. The pollution load index (PLI) and Geo-accumulation index (Igeo) levels for Cr, Zn, Cu, Cd heavy metals in sample A - E were less than 1 except for Pb which is >1, this show that, the sediment were polluted with Pb.


Sign in / Sign up

Export Citation Format

Share Document