Differetial Increase in Efficacy of Azotobacter Chroococcum and Bacillus Subtilis Co-Immobilized with Different Organic Manuares in Relation to Plant Growth, Nutritional Status and Grain Yield of Wheat (Triticum aestivum L.)

Author(s):  
Rose P. Minj ◽  
Rana Pratap Singh

Present study indicates that the growth, productivity and grain yield of wheat can be enhanced significantly by amending higher dose of <italic>Azotobacter chroococcum</italic> and <italic>Bacillus subtilis</italic> co-immobilized in 45mm diameter granules composed of different organic materials. The biofertilizers were co-immobilized in cow dung/ Farm Yard Manure (FYM) or vermicompost using acacia gum as binder, neem leaf powder and clay soil and applied to the earthen pots in forms of granules of 4-5 mm diameter. The vermicompost containing granules provided higher plant biomass (e.g. shoot height, root length, number of leaves, number of roots, tiller numbers, fresh weight and dry weight of shoot and root than others. FYM and cow dung based granules also enhanced the plant growth with a lower magnitude. The granules released NH<sub>4</sub><sup>+</sup>, NO<sub>3</sub><sup>-</sup>, NO<sub>2</sub><sup>-</sup> and PO<sub>4</sub><sup>3-</sup> in the plant's rhizosphere and enhanced availability of essential nutrients to the plants. The co-immobilized form of biofertilizers with vermicompost also increased yield of wheat <italic>(Triticum aestivum</italic> L. cv 502) in terms of grain weight per plant by 13.79%, with FYM by 11.65% and that with cow dung by 10.15% over free form of the chemical fertilizers (Recommended dose of urea; 150 kg/ha and DAP; 75 kg/ha). The studies indicate that the vermicompost is a better carrier for co-immobilization of the microbial biofertilizers <italic>A. chroococcum</italic> and <italic>B. subtilis</italic> to provide the better shelter and nutrient to the microbes and for higher nutrient availability during their application in the earthen pots.

2014 ◽  
Vol 63 (1) ◽  
pp. 83-88 ◽  
Author(s):  
JOSIP ČOLO ◽  
TIMEA I. HAJNAL-JAFARI ◽  
SIMONIDA ĐURIĆ ◽  
DRAGANA STAMENOV ◽  
SAUD HAMIDOVIĆ

The aim of the research was to examine the effect of rhizospheric bacteria Azotobacter chroococcum, Pseudomonas fluorescens (strains 1 and 2) and Bacillus subtilis on the growth and yield of onion and on the microorganisms in the rhizosphere of onion. The ability of microorganisms to produce indole-acetic acid (IAA), siderophores and to solubilize tricalcium phosphate (TCP) was also assessed. The experiment was conducted in field conditions, in chernozem type of soil. Bacillus subtilis was the best producer of IAA, whereas Pseudomonas fluorescens strains were better at producing siderophores and solubilizing phosphates. The longest seedling was observed with the application of Azotobacter chroococcum. The height of the plants sixty days after sowing was greater in all the inoculated variants than in the control. The highest onion yield was observed in Bacillus subtilis and Azotobacter chroococcum variants. The total number of bacteria and the number of Azotobacter chroococcum were larger in all the inoculated variants then in the control. The number of fungi decreased in most of the inoculated variants, whereas the number of actinomycetes decreased or remained the same.


Author(s):  
Marleena Hagner ◽  
Marja Uusitalo ◽  
Hanna Ruhanen ◽  
Juha Heiskanen ◽  
Rainer Peltola ◽  
...  

AbstractIn the northern boreal zone, revegetation and landscaping of closed mine tailings are challenging due to the high concentrations of potentially toxic elements; the use of nutrient-poor, glacigenic cover material (till); cool temperatures; and short growing period. Recycled waste materials such as biochar (BC) and composted sewage sludge (CSS) have been suggested to improve soil forming process and revegetation success as well as decrease metal bioavailability in closed mine tailing areas. We conducted two field experiments in old iron mine tailings at Rautuvaara, northern Finland, where the native mine soil or transported cover till soil had not supported plant growth since the mining ended in 1989. The impacts of CSS and spruce (Picea abies)–derived BC application to till soil on the survival and growth of selected plant species (Pinus sylvestris, Salix myrsinifolia, and grass mixture containing Festuca rubra, Lolium perenne, and Trifolium repens) were investigated during two growing seasons. In addition, the potential of BC to reduce bioaccumulation of metals in plants was studied. We found that (1) organic amendment like CSS markedly enhanced the plant growth and is therefore needed for vegetation establishment in tailing sites that contained only transported till cover, and (2) BC application to till soil-CSS mixture further facilitated the success of grass mixtures resulting in 71–250% higher plant biomass. On the other hand, (3) no effects on P. sylvestris or S. myrsinifolia were recorded during the first growing seasons, and (4) accumulation of metals in cover plants was negligible and BC application to till further decreased the accumulation of Al, Cr, and Fe in the plant tissues. Graphical abstract


Author(s):  
A.E. Ibragimov ◽  
◽  
D.Yu. Garshina ◽  
An. Kh. Baymiev ◽  
O.V. Lastochkina ◽  
...  

Wheat (Triticum aestivum L.) is one of the most important cereal food crops worldwide. Various abiotic and biotic stresses or their combinations lead to crop losses (up to 50-82%) and pose a serious threat to the agricultural industry and food security. Plant growth-promoting endophytic bacteria Bacillus subtilis are considered as a bioactive and eco-friendly strategy for plant protection. Earlier, we have shown B. subtilis 10-4 has a growth-promoting and anti-stress effect on wheat under water deficiency. Here, we investigated the effect of B. subtilis 10-4 and B. subtilis 10-4+salicylic acid (SA) on growth and tolerance of wheat (cv. ‘Omskaya-35’) to combined drought (12%PEG) and Fusarium culmorum. 12%PEG and F. culmorum led to yellowing of leaves (in addition to traces of the root damages). Inoculation with 10-4 and especially 10-4+SA reduced the fusarium development in wheat under drought. Similar effects were revealed for growth parameters. Also, 10-4 (especially 10-4+SA) reduces stress-induced lipid peroxidation (MDA). Such physiological effect may be connected with the ability of strain 10-4 to colonize the internal tissues of host-plant and regulate metabolism from the inside. The obtained construct based on the plasmid pHT01 and the green fluorescent protein (gfp) gene, by which was modified the strain 10-4, will allow revealing the nature of the symbiotic relationships between the strain 10-4 and host-plant. The findings indicate that application B. subtilis 10-4 and its composition with SA may be an effective strategy to increase wheat tolerance to the combined abiotic/biotic stresses.


2021 ◽  
Author(s):  
Ivica Djalovic ◽  
◽  
Vuk Radojevic ◽  
Vojislav Mihailovic ◽  
Sanja Vasiljevic ◽  
...  

Maize density is an important factor in cultivation which has significant effect on growth parameters. Newer hybrids have greater grain yield at higher plant densities than older hybrids. Differences in grain yield between older and newer maize hybrids were shown to be a function of plant population density. Optimum plant density for maximum grain yield per unit area may differ from hybrid to hybrid on account of significant interactions between hybrids and densities. Modern hybrids have shown tendencies to withstand higher levels of stress (i.e.- low N, high plant densities), which allow them to better sustain suitable photosynthetic rates, appropriate assimilate supplies, and maintain plant growth rates attributable to enhanced mineral nutrition and water use efficiency.


1991 ◽  
Vol 31 (2) ◽  
pp. 255 ◽  
Author(s):  
RF Brennan

The effect of copper (Cu) fertiliser on the incidence and severity of take-all of wheat was examined in 5 field experiments on soils naturally infested with Gaeumannomyces graminis var. tritici.Wheat (Triticum aestivum L.) was grown in soils at 5 levels of Cu fertiliser, ranging from nil to luxury levels of Cu (i.e. 5.0 kg Cuba) for wheat growth and grain yield. One soil was adequately supplied in Cu for wheat growth and yield. Copper-deficient wheat plants were more susceptible (P<0.05) to take-all than those plants with an adequate supply of Cu. The addition of Cu fertiliser beyond that required for maximum plant growth and grain yield had no effect (P<0.05) on the incidence and severity of take-all of wheat.


2009 ◽  
Vol 60 (8) ◽  
pp. 738 ◽  
Author(s):  
F. Y. Li ◽  
P. D. Jamieson ◽  
P. R. Johnstone ◽  
A. J. Pearson

Two hypothetical mechanisms exist for quantifying crop nitrogen (N) demand and N-deficit effects on crop growth. The Critical N mechanism uses a critical N concentration, while the Leaf N mechanism distinguishes active N in leaves from the N elsewhere in shoots. These two mechanisms were implemented in parallel in a maize model (Amaize) to evaluate their adequacy in predicting crop growth and development. In the Leaf N mechanism, two approaches for quantifying N-deficit effects, by reducing green leaf area (GAI) or diluting specific leaf nitrogen (SLN), were also examined. The model-predicted plant biomass, grain yield, and N uptake were compared with measurements from 47 maize crops grown on 16 sites receiving different N fertiliser treatments. The results showed that model-predicted plant biomass, grain yield and N uptake were insensitive to the approaches used for quantifying N-deficit effects in the Leaf N mechanism. The model-predicted plant biomass, grain yield and N uptake using either N approach were significantly related to measurements (P < 0.01) but had considerable deviations (r2 = 0.66–0.69 for biomass, 0.50–0.54 for grain yield: 0.17–0.33 for N uptake). The linear fits of the predicted against measured values showed no significant difference (P > 0.1) among the three N approaches, with the Leaf N mechanism predicting smaller deviation than the Critical N mechanism. However, the Critical N mechanism was better in simulating plant growth dynamics in early plant growth stages. The Leaf N mechanism distinguished functional from structural N pools in plants, having a sound physiological base. The simulation using the Leaf N mechanism with both SLN dilution and GAI reduction for quantifying N-deficit effects was the best in predicting crop growth and yield.


2020 ◽  
Vol 30 (1) ◽  
Author(s):  
Usama Samy Elkelany ◽  
Nehal Samy El-Mougy ◽  
Mokhtar Mohamed Abdel-Kader

Abstract Background Eggplant (Solanum melongena) is one of the most popular vegetable crops in Egypt. It is affected by a wide range of pests; prominent among them is root-knot nematode (RKN) Meloidogyne spp. which constitutes a major group of plant-parasitic nematodes causing great economic losses worldwide especially in Egypt. Main body The present investigation was performed under greenhouse conditions to evaluate the potentials of 3 growth-promoting bacteria, Azospirilum brasilense, Azotobacter chroococcum, and Bacillus subtilis, as well as chitosan for the control of the nematode Meloidogyne incognita causes root-knot disease of eggplant cv. Baladi. All treatments reduced (p ≤ 0.05) the nematode population in soil and roots as well as enhanced the plant growth parameters of eggplant remarkably than the control. The applied treatments varied in their efficacy against the plant nematode infection in correspondence to the time of application. The recorded results demonstrated that maximum reduction in J2 in soil, egg mass/root, and eggs/egg masses were obtained by treating the soil with Bacillus subtilis followed by Azospirilum brasilense and Azotobacter chroococcum. Also, chitosan resulted in high reduction in root galls compared to control treatment. Conclusion The use of plant growth-promoting rhizobacteria, Azospirilum brasilense, Azotobacter chroococcum, Bacillus subtilis, and chitosan achieved efficient control to Meloidogyne incognita and consequently increase eggplant growth parameters under greenhouse conditions. The present results suggested introducing such rhizobacteria in integrated nematode management program.


1995 ◽  
Vol 16 (3) ◽  
pp. 293-297 ◽  
Author(s):  
D. Stahli ◽  
D. Perrissin-Fabert ◽  
A. Blouet ◽  
A. Guckert

2020 ◽  
Vol 21 (1) ◽  
pp. 14-19
Author(s):  
Praptiningsih Gamawati Adinurani ◽  
Sri Rahayu ◽  
Nurul Fima Zahroh

Mikroba Bacillus subtilis merupakan agen pengendali hayati mempunyai kelebihan sebagai Plant Growth Promoting Rhizobacteria (PGPR) yaitu dapat berfungsi sebagai biofertilizer, biostimulan, biodekomposer dan bioprotektan. Tujuan penelitian mengetahui potensi B. subtilis dalam merombak bahan organik sebagai usaha meningkatkan ketersediaan bahan organik tanah yang semakin menurun. Penelitian menggunakan Rancangan Petak Terbagi dengan berbagai  bahan organik sebagai petak utama (B0 = tanpa bahan organik, B1 = kotoran ayam,  B2 = kotoran kambing, B3 = kotoran sapi) dan aplikasi B.subtilis sebagai anak petak (A0 = 0 cc/L, A1 = 5cc/L, A2 = 10 cc/L, Pengamatan meliputi variabel tinggi tanaman, indeks luas daun, jumlah buah per tanaman, berat buah per tanaman, dan bahan organik tanah. Data pengamatan  dianalisis ragam  menggunakan  Statistical Product and Service Solutions (SPSS) versi 25 dan dilanjutkan dengan uji Duncan untuk mengetahui signifikansi perbedaan antar perlakuan. Hasil penelitian menunjukkan tidak terdapat interaksi antara bahan organik kotoran ternak dan konsentrasi B. subtilis terhadap semua variabel pengamatan. Potensi B. subtilis sangat baik dalam mendekomposisi bahan organik yang ditunjukkan dengan peningkatan bahan organik, dan hasil terbaik pada kotoran  sapi (B3) dan konsentrasi B. subtilis 15 mL/L masing-masing sebesar 46.47 % dan 34.76 %. Variabel pertumbuhan tidak berbeda nyata kecuali tinggi tanaman dengan pertambahan tinggi paling banyak pada pemberian kotoran kambing sebesar 170.69 %.


Sign in / Sign up

Export Citation Format

Share Document