scholarly journals Processing Oxford Nanopore Long Reads Using Amazon Web Services

2020 ◽  
Vol 3 (4) ◽  
pp. e00131
Author(s):  
V.V. Shapovalova ◽  
S.P. Radko ◽  
K.G. Ptitsyn ◽  
G.S. Krasnov ◽  
K.V. Nakhod ◽  
...  

Studies of genomes and transcriptomes are performed using sequencers that read the sequence of nucleotide residues of genomic DNA, RNA, or complementary DNA (cDNA). The analysis consists of an experimental part (obtaining primary data) and bioinformatic processing of primary data. The bioinformatics part is performed with different sets of input parameters. The selection of the optimal values of the parameters, as a rule, requires significant computing power. The article describes a protocol for processing transcriptome data by virtual computers provided by the cloud platform Amazon Web Services (AWS) using the example of the recently emerging technology of long DNA and RNA sequences (Oxford Nanopore Technology). As a result, a virtual machine and instructions for its use have been developed, thus allowing a wide range of molecular biologists to independently process the results obtained using the "Oxford nanopore".

2021 ◽  
Author(s):  
Megha Mathur ◽  
Sumeet Patiyal ◽  
Anjali Dhall ◽  
Shipra Jain ◽  
Ritu Tomer ◽  
...  

In the past few decades, public repositories on nucleotides have increased with exponential rates. This pose a major challenge to researchers to predict the structure and function of nucleotide sequences. In order to annotate function of nucleotide sequences it is important to compute features/attributes for predicting function of these sequences using machine learning techniques. In last two decades, several software/platforms have been developed to elicit a wide range of features for nucleotide sequences. In order to complement the existing methods, here we present a platform named Nfeature developed for computing wide range of features of DNA and RNA sequences. It comprises of three major modules namely Composition, Correlation, and Binary profiles. Composition module allow to compute different type of compositions that includes mono-/di-tri-nucleotide composition, reverse complement composition, pseudo composition. Correlation module allow to compute various type of correlations that includes auto-correlation, cross-correlation, pseudo-correlation. Similarly, binary profile is developed for computing binary profile based on nucleotides, di-nucleotides, di-/tri-nucleotide properties. Nfeature also allow to compute entropy of sequences, repeats in sequences and distribution of nucleotides in sequences. In addition to compute feature in whole sequence, it also allows to compute features from part of sequence like split-composition, N-terminal, C-terminal. In a nutshell, Nfeature amalgamates existing features as well as number of novel features like nucleotide repeat index, distance distribution, entropy, binary profile, and properties. This tool computes a total of 29217 and 14385 features for DNA and RNA sequence, respectively. In order to provide, a highly efficient and user-friendly tool, we have developed a standalone package and web-based platform (https://webs.iiitd.edu.in/raghava/nfeature).


2018 ◽  
Author(s):  
Grzegorz M Boratyn ◽  
Jean Thierry-Mieg ◽  
Danielle Thierry-Mieg ◽  
Ben Busby ◽  
Thomas L Madden

ABSTRACTNext-generation sequencing technologies can produce tens of millions of reads, often paired-end, from transcripts or genomes. But few programs can align RNA on the genome and accurately discover introns, especially with long reads. We introduce Magic-BLAST, a new aligner based on ideas from the Magic pipeline. It uses innovative techniques that include the optimization of a spliced alignment score and selective masking during seed selection. We evaluate the performance of Magic-BLAST to accurately map short or long sequences and its ability to discover introns on real RNA-seq data sets from PacBio, Roche and Illumina runs, and on six benchmarks, and compare it to other popular aligners. Additionally, we look at alignments of human idealized RefSeq mRNA sequences perfectly matching the genome. We show that Magic-BLAST is the best at intron discovery over a wide range of conditions and the best at mapping reads longer than 250 bases, from any platform. It is versatile and robust to high levels of mismatches or extreme base composition, and reasonably fast. It can align reads to a BLAST database or a FASTA file. It can accept a FASTQ file as input or automatically retrieve an accession from the SRA repository at the NCBI.


Author(s):  
B.A. Hamkalo ◽  
S. Narayanswami ◽  
A.P. Kausch

The availability of nonradioactive methods to label nucleic acids an the resultant rapid and greater sensitivity of detection has catapulted the technique of in situ hybridization to become the method of choice to locate of specific DNA and RNA sequences on chromosomes and in whole cells in cytological preparations in many areas of biology. It is being applied to problems of fundamental interest to basic cell and molecular biologists such as the organization of the interphase nucleus in the context of putative functional domains; it is making major contributions to genome mapping efforts; and it is being applied to the analysis of clinical specimens. Although fluorescence detection of nucleic acid hybrids is routinely used, certain questions require greater resolution. For example, very closely linked sequences may not be separable using fluorescence; the precise location of sequences with respect to chromosome structures may be below the resolution of light microscopy(LM); and the relative positions of sequences on very small chromosomes may not be feasible.


2020 ◽  
Vol 7 (2) ◽  
pp. 34-41
Author(s):  
VLADIMIR NIKONOV ◽  
◽  
ANTON ZOBOV ◽  

The construction and selection of a suitable bijective function, that is, substitution, is now becoming an important applied task, particularly for building block encryption systems. Many articles have suggested using different approaches to determining the quality of substitution, but most of them are highly computationally complex. The solution of this problem will significantly expand the range of methods for constructing and analyzing scheme in information protection systems. The purpose of research is to find easily measurable characteristics of substitutions, allowing to evaluate their quality, and also measures of the proximity of a particular substitutions to a random one, or its distance from it. For this purpose, several characteristics were proposed in this work: difference and polynomial, and their mathematical expectation was found, as well as variance for the difference characteristic. This allows us to make a conclusion about its quality by comparing the result of calculating the characteristic for a particular substitution with the calculated mathematical expectation. From a computational point of view, the thesises of the article are of exceptional interest due to the simplicity of the algorithm for quantifying the quality of bijective function substitutions. By its nature, the operation of calculating the difference characteristic carries out a simple summation of integer terms in a fixed and small range. Such an operation, both in the modern and in the prospective element base, is embedded in the logic of a wide range of functional elements, especially when implementing computational actions in the optical range, or on other carriers related to the field of nanotechnology.


2016 ◽  
Vol 8 (1) ◽  
pp. 75-91 ◽  
Author(s):  
Shelby Devina ◽  
Waluyo Waluyo

The objective of this research was to examine the effect of perceived usefulness, perceived ease of use, speed, security and privacy and readiness technology tax payers information to e-Filing usage. The object of this study is the individual tax payers in Tangerang City, Karawaci District. The selection of the sample is determined based on convenience sampling method. Data used in this study was primary data, id est: questionnaires. The respondent in this study were 110. Data analysis technique in this study using multiple linear regression. The result of this study were (1) perceived usefulness have a significant impact towards e-Filing usage; (2) perceived ease of use have a significant impact towards e-Filing usage; (3) speed does not have a significant impact towards e-Filing usage; (4) security and privacy does not have a significant impact towards e-Filing usage; (5) readiness technology tax payers information does not have a significant impact towards e-Filing usage; (6) perceived usefulness, perceived ease of use, speed, security and privacy and readiness technology tax payers information all simultaneously, have a significant impact towards e-Filing usage. Keywords: e-Filing usage, perceived usefulness, perceived ease of use, readiness technology tax payers information, security and privacy.


2017 ◽  
Vol 68 (4) ◽  
pp. 745-747 ◽  
Author(s):  
Marius Mioc ◽  
Sorin Avram ◽  
Vasile Bercean ◽  
Mihaela Balan Porcarasu ◽  
Codruta Soica ◽  
...  

Angiogenesis plays an important function in tumor proliferation, one of the main angiogenic promoters being the vascular endothelial growth factor (VEGF) which activates specific receptors, particularly VEGFR-2. Thus, VEGFR-2 has become an essential therapeutic target in the development of new antitumor drugs. 1,2,4-triazoles show a wide range of biological activities, including antitumor effect, which was documented by numerous reports. In the current study the selection of 5-mercapto-1,2,4-triazole structure (1H-3-styryl-5-benzylidenehydrazino-carbonyl-methylsulfanil-1,2,4-triazole, Tz3a.7) was conducted based on molecular docking that emphasized it as suitable ligand for VEGFR-2 and EGFR1 receptors. Compound Tz3a.7 was synthesized and physicochemically and biologically evaluated thus revealing a moderate antiproliferative activity against breast cancer cell line MDA-MB-231.


1996 ◽  
Vol 118 (3) ◽  
pp. 439-443 ◽  
Author(s):  
Chuen-Huei Liou ◽  
Hsiang Hsi Lin ◽  
F. B. Oswald ◽  
D. P. Townsend

This paper presents a computer simulation showing how the gear contact ratio affects the dynamic load on a spur gear transmission. The contact ratio can be affected by the tooth addendum, the pressure angle, the tooth size (diametral pitch), and the center distance. The analysis presented in this paper was performed by using the NASA gear dynamics code DANST. In the analysis, the contact ratio was varied over the range 1.20 to 2.40 by changing the length of the tooth addendum. In order to simplify the analysis, other parameters related to contact ratio were held constant. The contact ratio was found to have a significant influence on gear dynamics. Over a wide range of operating speeds, a contact ratio close to 2.0 minimized dynamic load. For low-contact-ratio gears (contact ratio less than two), increasing the contact ratio reduced gear dynamic load. For high-contact-ratio gears (contact ratio equal to or greater than 2.0), the selection of contact ratio should take into consideration the intended operating speeds. In general, high-contact-ratio gears minimized dynamic load better than low-contact-ratio gears.


1998 ◽  
Vol 162 ◽  
pp. 100-105
Author(s):  
Andrew J. Norton ◽  
Mark H. Jones

The Open University is the UK's foremost distance teaching university. For over twenty five years we have been presenting courses to students spanning a wide range of degree level and vocational subjects. Since we have no pre-requisites for entry, a major component of our course profile is a selection of foundation courses comprising one each in the Arts, Social Science, Mathematics, Technology and Science faculties. The Science Faculty's foundation course is currently undergoing a substantial revision. The new course, entitled “S103: Discovering Science”, will be presented to students for the first time in 1998.


2021 ◽  
Vol 22 (4) ◽  
pp. 2104
Author(s):  
Pedro Robles ◽  
Víctor Quesada

Eleven published articles (4 reviews, 7 research papers) are collected in the Special Issue entitled “Organelle Genetics in Plants.” This selection of papers covers a wide range of topics related to chloroplasts and plant mitochondria research: (i) organellar gene expression (OGE) and, more specifically, chloroplast RNA editing in soybean, mitochondria RNA editing, and intron splicing in soybean during nodulation, as well as the study of the roles of transcriptional and posttranscriptional regulation of OGE in plant adaptation to environmental stress; (ii) analysis of the nuclear integrants of mitochondrial DNA (NUMTs) or plastid DNA (NUPTs); (iii) sequencing and characterization of mitochondrial and chloroplast genomes; (iv) recent advances in plastid genome engineering. Here we summarize the main findings of these works, which represent the latest research on the genetics, genomics, and biotechnology of chloroplasts and mitochondria.


2021 ◽  
Vol 22 (15) ◽  
pp. 7773
Author(s):  
Neann Mathai ◽  
Conrad Stork ◽  
Johannes Kirchmair

Experimental screening of large sets of compounds against macromolecular targets is a key strategy to identify novel bioactivities. However, large-scale screening requires substantial experimental resources and is time-consuming and challenging. Therefore, small to medium-sized compound libraries with a high chance of producing genuine hits on an arbitrary protein of interest would be of great value to fields related to early drug discovery, in particular biochemical and cell research. Here, we present a computational approach that incorporates drug-likeness, predicted bioactivities, biological space coverage, and target novelty, to generate optimized compound libraries with maximized chances of producing genuine hits for a wide range of proteins. The computational approach evaluates drug-likeness with a set of established rules, predicts bioactivities with a validated, similarity-based approach, and optimizes the composition of small sets of compounds towards maximum target coverage and novelty. We found that, in comparison to the random selection of compounds for a library, our approach generates substantially improved compound sets. Quantified as the “fitness” of compound libraries, the calculated improvements ranged from +60% (for a library of 15,000 compounds) to +184% (for a library of 1000 compounds). The best of the optimized compound libraries prepared in this work are available for download as a dataset bundle (“BonMOLière”).


Sign in / Sign up

Export Citation Format

Share Document