scholarly journals Apolipoprotein A-I stimulates secretion of insulin and matrix metalloproteinases by islets of Langerhans

2018 ◽  
Vol 64 (2) ◽  
pp. 195-200 ◽  
Author(s):  
I.F. Usynin ◽  
O.N. Poteryaeva ◽  
G.S. Russkikh ◽  
A.V. Zubova ◽  
K.Yu. Boiko ◽  
...  

The development of type 2 diabetes mellitus (DM2) is accompanied by disturbances in lipid metabolism. These include the increase in serum levels of atherogenic fractions of very low-density (VLDL) and low-density lipoproteins (LDL), total cholesterol, triglycerides and apo B. In contrast, the level of antiatherogenic high density lipoproteins (HDL) and the content of apolipoprotein A-I (apoA-I) decreased. To study the effect of the observed metabolic changes on insulin secretion in vitro, we used the islets of Langerhans isolated from the rat pancreas. It has been found that incubation of the islets in the presence of serum of the obese patients and patients with decompensated DM2 leads to a decrease in insulin secretion by 2.4 and 5.0 times, respectively. On the contrary, the addition of HDL to the incubation medium increased the insulin secretion by 3.4 times. A similar effect was observed in the presence of apoA-I, the main protein component of HDL. In the presence of apoA-I, the extracellular activity of matrix metalloproteinases (MMPs) demonstrated a 10-fold increase. The addition of LDL and VLDL to the islets did not change the secretion of insulin and activity of MMP. Our results testify to the important role of HDL and apoA-I in regulation of the insulin secretion by b-cells and the activity of MMPs in the islets of Langerhans.

1984 ◽  
Vol 224 (2) ◽  
pp. 569-576 ◽  
Author(s):  
R Zechner ◽  
H Dieplinger ◽  
A Roscher ◽  
G M Kostner

Normal fasting human plasma was incubated for 24 h at 37 degrees C in the presence or absence of lecithin:cholesterol acyltransferase (LCAT) inhibitors. The low-density lipoprotein (LDL) fractions of incubated plasma (control LDL and LCAT-modified LDL) were studied with respect to their chemical and functional properties. LCAT-modified LDL differed from control LDL by a decreased phospholipid and free-cholesterol content, but increased cholesteryl esters. Furthermore, an increase of the relative protein content in LDL by 16-20% was found. Apolipoproteins of LCAT-modified LDL exhibited a 10-fold increase of apo AI, a 4-5-fold increase of apo E, and a 2-fold increase of apo C. All these apolipoproteins resided together with apo B on the same particles. LCAT-modified LDL displayed a higher electrophoretic mobility, a higher hydrated density, a decreased flotation constant and a smaller diameter. Cultured human fibroblasts bound and internalized LCAT-modified LDL to a lower extent than control LDL. The degradation, however, was faster. Modified LDL suppressed 3-hydroxy-3-methylglutaryl-CoA reductase activity to a lower extent than did control LDL. Our results demonstrate that LCAT action, together with lipid transfer and exchange processes, markedly alters the chemical and physiochemical properties of LDL. This in turn significantly influences LDL catabolism in vitro.


2015 ◽  
Vol 35 (suppl_1) ◽  
Author(s):  
Foued Maafi ◽  
Baoqiang Li ◽  
Catherine Gebhard ◽  
Mathieu Brodeur ◽  
Louis Villeneuve ◽  
...  

Introduction and Objective: The possible benefits of high-density lipoproteins (HDL) against atherosclerosis have been largely attributed to its major protein component, apolipoprotein A-I (apoA-I). However, apoA-I can be degraded by diverse processes, including proteases localized in atherosclerotic plaques, which could reduce the effectiveness of HDL-based therapies. Here we describe the development of a new bioactivatable near-infrared apoA-I-Cy5.5 fluorescent probe and its initial use in the assessment of proteolytic activities that degrade apoA-I in vitro, in vivo and ex vivo. Methods and Results: Fluorescence emission of our probe is quenched by saturation of Cy5.5 fluorophore molecules on the full-length apoA-I protein. In vitro proteolysis of the apoA-I probe showed up to 11-fold increase of near-infrared fluorescence (n=5, P ≤ 0.05). Using this apoA-I-Cy5.5 probe, we were able to quantify proteolytic activities from a wide range of proteases targeting serine (chymase), cysteine (cathepsin S) and metalloproteases (MMP-12). Also, we detected activation of the apoA-I-Cy5.5 probe on aortic cryosections from Ldlr-/--Tg for human apoB atherosclerotic (ATX) mice using an in situ zymography assay and observed that broad-spectrum protease inhibitors protect the probe from protease activities, as shown by decreased fluorescence compared to conditions without protease inhibitors (-54%, n= 6 per group, P ≤ 0.001). In vivo, using a combined Fluorescence Molecular Tomography-Magnetic Resonance imaging system, the injected probe exhibited a trend for increased fluorescence in the aorta when infused in ATX mice compared to C57BL/6J wild-type mice. Ex vivo imaging of these aortas showed a 10-fold increase of fluorescence in ATX (n=5) mice compared to CTL (n=3) mice (P ≤ 0.05). Conclusion: Given the potential importance of HDL functionality in the assessment of cardiovascular risk, this novel protease-activatable apoA-I probe may help to improve HDL-based therapies through better characterization of the alterations of functionality of apoA-I or lipid-poor HDL particles in different pathophysiological settings.


1979 ◽  
Vol 178 (2) ◽  
pp. 455-466 ◽  
Author(s):  
B S Suri ◽  
M E Targ ◽  
D S Robinson

1. The work reported was designed to provide quantitative information about the capacity of the extrahepatic tissues of the rat to degrade injected VLD lipoproteins (very-low-density lipoproteins, d less than 1.006) to LD lipoproteins (low-density lipoproteins, d 1.006–1.063) and to study the fate of the different VLD-lipoprotein apoproteins during the degradative process. 2. Rat liver VLD lipoproteins, radioactively labelled in their protein moieties, were produced by the perfusion of the organ and were either injected into the circulation of the supradiaphragmatic rats or incubated in rat plasma at 37 degrees C. At a time (75 min) when approx. 90% of the triacylglycerol of the VLD lipoproteins had been hydrolysed the supradiaphragmatic rats were bled and VLD lipoproteins, LD lipoproteins and HD lipoproteins (high-density lipoproteins, d 1.063–1.21) were separated from their plasma and from the plasma incubated in vitro. The apoproteins of each of the lipoprotein classes were resolved by gel-filtration chromatography into three main fractions, designated peaks I, II and III. 3. Incubation of the liver VLD lipoproteins in plasma in vitro led to the transfer of about 30% of the total protein radioactivity to the HD lipoproteins. The transfer mainly involved the peak-II (arginine-rich and/or apo A-I) and peak-III (apo C) proteins. There was also a small transfer of radioactivity (about 5% of the total) to the LD lipoproteins. 4. Injection of the liver VLD lipoproteins into the circulation of the supradiaphragmatic rat resulted in the transfer of about 15% of the total VLD-lipoprotein radioactivity to the LD lipoproteins. The transfer involved mainly the peak-I (apo B) proteins and accounted for about 20% of the total apo B protein radioactivity of the injected VLD lipoproteins. When the endogenous plasma VLD lipoprotein was taken into account the transfer of apo B protein was about 35%. 5. The transfer of peak-II protein radioactivity from the VLD to the HD lipoproteins was greater in the plasma of the supradiaphragmatic rat than in the incubated plasma suggesting that there was a net transfer of peak-II apoproteins during the VLD lipoprotein degradation. The transfer of peak-III protein radioactivity was not greater in the plasma of the supradiaphragmatic rat, but there was a loss of this radioactivity from the circulation.


2019 ◽  
Vol 39 (5) ◽  
Author(s):  
Ying Yan ◽  
Shulai Lu ◽  
Shaoyou Jia ◽  
Qingzhe Dong ◽  
Lei Wang ◽  
...  

Abstract To explore the anti-atherosclerotic effects of recombinant high-density lipoproteins (rHDL) of apolipoprotein AI wild-type (apoA-Iwt), apolipoprotein AI Milano (apoA-IM), apolipoprotein AI (N74C) (apoA-I (N74C) )and apolipoprotein AV (apoA-V). We constructed rHDL liposomes (rHDLs), which included apoA-Iwt, apoA-IM, and apoA-I (N74C), followed by the synthesis of rHDLs, with the indicated ratios of apoA-Iwt, apoA-IM, apoA-I (N74C) and apoA-V. We investigated the anti-atherosclerotic effects by experiments including the DMPC clearance assay and experiments that assessed the in vitro antioxidation against low-density lipoprotein, the cellular uptake of oxidized low-density lipoprotein (oxLDL) and the in vitro intracellular lipid accumulation. Electron microscopy results revealed that as more apoA-V was present in rHDLs, the particle size of rHDLs was larger. The DMPC clearance assay subsequently showed that rHDL protein mixtures could promote DMPC turbidity clearance when more apoA-V was included in the reaction mixtures, with apoAV-rHDL showing the strongest turbidity clearance ability (P<0.05 vs AI-rHDL). In vitro antioxidation against low-density lipoprotein assays indicated that rHDLs containing apoA-V had increasing oxidation resistance against low-density lipoprotein (LDL) with higher apoA-V contents. Finally, cellular uptake of oxLDL and intracellular lipids suggested an apparent oxidation resistance to LDL oxidation in vitro and a reduced intracellular lipid accumulation in THP-1-derived macrophages, with AIM-rHDL demonstrating the greatest ability to decrease intracellular lipid accumulation. Different proportions of apolipoprotein A-I cysteine mutants and apolipoprotein A-V of rHDL changed the lipid binding capacity, particle size, and antioxidant capacity. These changes may show a beneficial effect of rHDL on atherosclerosis.


1994 ◽  
Vol 304 (2) ◽  
pp. 549-554 ◽  
Author(s):  
M C Blatter Garin ◽  
C Abbott ◽  
S Messmer ◽  
M Mackness ◽  
P Durrington ◽  
...  

Paraoxonase is a serum protein bound to high-density lipoproteins (HDLs). The physiological function of the enzyme is unknown, but a role in lipid metabolism has been postulated. To date, studies of the protein have had to rely on measurements of enzyme activity with various substrates. We have developed a highly specific, competitive e.l.i.s.a. using a previously characterized monoclonal antibody. The assay can detect 20 ng of paraoxonase with a working range of 75-600 ng. Intra- and interassay coefficients of variation were 6.5 and 7.9% respectively. Serum concentrations of paraoxonase in healthy subjects from Geneva and Manchester ranged from 25 to 118 micrograms/ml. There were significant differences in mean concentrations between the two groups (Geneva, 79.3 +/- 18.7 micrograms/ml; Manchester, 59.9 +/- 24.1 micrograms/ml: P < 0.001), differences also apparent when subjects were compared according to paraoxonase phenotype. These appeared to be largely a consequence of differences in apolipoprotein A-I concentrations between the two populations, suggesting that HDL particle number may be important in determining serum levels of paraoxonase. Paraoxonase specific activities were also significantly different between the two groups of subjects (Geneva, 2.08 +/- 0.96 units/mg; Manchester, 3.08 +/- 1.73 units/mg: P < 0.001), which may reflect differences in HDL particle composition. The e.l.i.s.a. should furnish the necessary complement to studies of paraoxonase enzymic activity and has already provided evidence for differences with respect to serum levels of the protein both between populations and between phenotypes within populations.


2014 ◽  
Vol 92 (3) ◽  
pp. 226-233 ◽  
Author(s):  
Amina Unis ◽  
Amany Abdelbary ◽  
Manal Hamza

Atherosclerosis is one of the most common disorders among the elderly. Depression may be associated with the development of atherosclerosis. Thus, the aim of this study is to evaluate and compare the effects of escitalopram (a selective serotonin reuptake inhibitor) with atorvastatin (a well known antihyperlipidemic drug) on high fat diet induced atherosclerosis in rats. The results of this study showed that the administration of either escitalopram or atorvastatin for 6 weeks was associated with a significant decrease in serum levels of total cholesterol, triglycerides, low density lipoproteins, very low density lipoproteins, and serum malondialdehyde, and a significant increase in high density lipoproteins when compared with the atherosclerosis model group. Histopathological examination of the aortas from the test rats revealed significant regression of atherosclerotic changes, together with a significant decrease in vascular cell adhesion molecule-1 (VCAM-1) expression in the media of both the escitalopram group and the atorvastatin group when compared with the atherosclerosis model group. This study has shown that escitalopram reduced atherosclerotic changes, thus its use as an antidepressant in elderly patients should be considered.


2016 ◽  
Vol 116 (09) ◽  
pp. 554-564 ◽  
Author(s):  
Federico Carbone ◽  
Fabienne Burger ◽  
Aline Roth ◽  
Maria Bertolotto ◽  
Bianca Pane ◽  
...  

SummaryHumoral autoimmune-mediated inflammation plays a role in atherogenesis, and potentially in arterial thrombosis. Anti-apolipoprotein A-1 (apoA-1) IgG have been reported to represent emergent mediators of atherogenesis through Toll-like receptors (TLR) 2, 4 and CD14 signalling. We investigated the role of anti-apoA-1 IgG on tissue factor (TF) expression and activation, a key coagulation regulator underlying atherothrombosis. Atherothrombosis features were determined by immunohistochemical TF staining of human carotid biopsies derived from patients with severe carotid stenosis undergoing elective surgery (n=176), and on aortic roots of different genetic backgrounds mice (ApoE-/-; TLR2-/-ApoE-/- and TLR4-/-ApoE-/-) exposed to passive immunisation with anti-apoA-1 IgG. Human serum levels of anti-apoA-1 IgG were measured by ELISA. In vitro, on human-monocyte-derived-macrophages (HMDM) the anti-apoA-1 IgG increased TF expression and activity were analysed by FACS and chromogenic assays in presence of different pharmacological inhibitors. Human serum anti-apoA-1 IgG levels significantly correlated to intraplaque TF expression in carotid biopsies (r=0.31, p<0.001), which was predictive of clinically symptomatic lesions. On HMDM, anti-apoA-1 IgG induced a TLR2, 4 and CD14-dependent increase in TF expression and activity, involving NF-kappaB and a c-Jun N-terminal kinase-dependent AP-1 transcription factors. In ApoE-/- mice, anti-apoA-1 IgG passive immunisation significantly enhanced intraplaque TF expression when compared to control IgG. This effect was lost in both TLR2-/-ApoE-/- and TLR4-/-ApoE-/- mice. These results demonstrate that anti-apoA-1 IgG are associated with TF expression in human atherosclerotic plaques, induce TF expression in vitro and in vivo through TLR2 and 4 signalling, supporting a possible causal relationship between anti-apoA-1 IgG and atherothrombosis.


2003 ◽  
Vol 47 (9) ◽  
pp. 2796-2803 ◽  
Author(s):  
Kishor M. Wasan ◽  
Olena Sivak ◽  
Richard A. Cote ◽  
Aaron I. MacInnes ◽  
Kathy D. Boulanger ◽  
...  

ABSTRACT The objective of this study was to determine the distribution profile of the novel endotoxin antagonist E5564 in plasma obtained from fasted human subjects with various lipid concentrations. Radiolabeled E5564 at 1 μM was incubated in fasted plasma from seven human subjects with various total cholesterol (TC) and triglyceride (TG) concentrations for 0.5 to 6 h at 37°C. Following these incubations, plasma samples were separated into their lipoprotein and lipoprotein-deficient fractions by ultracentrifugation and were assayed for E5564 radioactivity. TC, TG, and protein concentrations in each fraction were determined by enzymatic assays. Lipoprotein surface charge within control and phosphatidylinositol-treated plasma and E5564’s influence on cholesteryl ester transfer protein (CETP) transfer activity were also determined. We observed that the majority of E5564 was recovered in the high-density lipoprotein (HDL) fraction. We further observed that incubation in plasma with increased levels of TG-rich lipoprotein (TRL) lipid (TC and TG) concentrations resulted in a significant increase in the percentage of E5564 recovered in the TRL fraction. In further experiments, E5564 was preincubated in human TRL. Then, these mixtures were incubated in hypolipidemic human plasma for 0.5 and 6 h at 37°C. Preincubation of E5564 in purified TRL prior to incubation in human plasma resulted in a significant decrease in the percentage of drug recovered in the HDL fraction and an increase in the percentage of drug recovered in the TRL and low-density lipoprotein fractions. These findings suggest that the majority of the drug binds to HDLs. Preincubation of E5564 in TRL prior to incubation in normolipidemic plasma significantly decreased the percentage of drug recovered in the HDL fraction. Modifications to the lipoprotein negative charge did not alter the E5564 concentration in the HDL fraction. In addition, E5564 does not influence CETP-mediated transfer activity. Information from these studies could be used to help identify the possible components of lipoproteins which influence the interaction of E5564 with specific lipoprotein particles.


Sign in / Sign up

Export Citation Format

Share Document