scholarly journals Anti-apolipoprotein A-1 auto-antibodies as active modulators of atherothrombosis

2016 ◽  
Vol 116 (09) ◽  
pp. 554-564 ◽  
Author(s):  
Federico Carbone ◽  
Fabienne Burger ◽  
Aline Roth ◽  
Maria Bertolotto ◽  
Bianca Pane ◽  
...  

SummaryHumoral autoimmune-mediated inflammation plays a role in atherogenesis, and potentially in arterial thrombosis. Anti-apolipoprotein A-1 (apoA-1) IgG have been reported to represent emergent mediators of atherogenesis through Toll-like receptors (TLR) 2, 4 and CD14 signalling. We investigated the role of anti-apoA-1 IgG on tissue factor (TF) expression and activation, a key coagulation regulator underlying atherothrombosis. Atherothrombosis features were determined by immunohistochemical TF staining of human carotid biopsies derived from patients with severe carotid stenosis undergoing elective surgery (n=176), and on aortic roots of different genetic backgrounds mice (ApoE-/-; TLR2-/-ApoE-/- and TLR4-/-ApoE-/-) exposed to passive immunisation with anti-apoA-1 IgG. Human serum levels of anti-apoA-1 IgG were measured by ELISA. In vitro, on human-monocyte-derived-macrophages (HMDM) the anti-apoA-1 IgG increased TF expression and activity were analysed by FACS and chromogenic assays in presence of different pharmacological inhibitors. Human serum anti-apoA-1 IgG levels significantly correlated to intraplaque TF expression in carotid biopsies (r=0.31, p<0.001), which was predictive of clinically symptomatic lesions. On HMDM, anti-apoA-1 IgG induced a TLR2, 4 and CD14-dependent increase in TF expression and activity, involving NF-kappaB and a c-Jun N-terminal kinase-dependent AP-1 transcription factors. In ApoE-/- mice, anti-apoA-1 IgG passive immunisation significantly enhanced intraplaque TF expression when compared to control IgG. This effect was lost in both TLR2-/-ApoE-/- and TLR4-/-ApoE-/- mice. These results demonstrate that anti-apoA-1 IgG are associated with TF expression in human atherosclerotic plaques, induce TF expression in vitro and in vivo through TLR2 and 4 signalling, supporting a possible causal relationship between anti-apoA-1 IgG and atherothrombosis.

2020 ◽  
Vol 8 (10) ◽  
pp. 1627
Author(s):  
Tecla Ciociola ◽  
Pier Paolo Zanello ◽  
Tiziana D’Adda ◽  
Serena Galati ◽  
Stefania Conti ◽  
...  

The growing problem of antimicrobial resistance highlights the need for alternative strategies to combat infections. From this perspective, there is a considerable interest in natural molecules obtained from different sources, which are shown to be active against microorganisms, either alone or in association with conventional drugs. In this paper, peptides with the same sequence of fragments, found in human serum, derived from physiological proteins, were evaluated for their antifungal activity. A 13-residue peptide, representing the 597–609 fragment within the albumin C-terminus, was proved to exert a fungicidal activity in vitro against pathogenic yeasts and a therapeutic effect in vivo in the experimental model of candidal infection in Galleria mellonella. Studies by confocal microscopy and transmission and scanning electron microscopy demonstrated that the peptide penetrates and accumulates in Candida albicans cells, causing gross morphological alterations in cellular structure. These findings add albumin to the group of proteins, which already includes hemoglobin and antibodies, that could give rise to cryptic antimicrobial fragments, and could suggest their role in anti-infective homeostasis. The study of bioactive fragments from serum proteins could open interesting perspectives for the development of new antimicrobial molecules derived by natural sources.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Michele Dei Cas ◽  
Jessica Rizzo ◽  
Mariangela Scavone ◽  
Eti Femia ◽  
Gian Marco Podda ◽  
...  

AbstractLow-dose aspirin (ASA) is used to prevent cardiovascular events. The most commonly used formulation is enteric-coated ASA (EC-ASA) that may be absorbed more slowly and less efficiently in some patients. To uncover these “non-responders” patients, the availability of proper analytical methods is pivotal in order to study the pharmacodynamics, the pharmacokinetics and the metabolic fate of ASA. We validated a high-throughput, isocratic reversed-phase, negative MRM, LC–MS/MS method useful for measuring circulating ASA and salicylic acid (SA) in blood and plasma. ASA-d4 and SA-d4 were used as internal standards. The method was applied to evaluate: (a) the "in vitro" ASA degradation by esterases in whole blood and plasma, as a function of time and concentration; (b) the "in vivo" kinetics of ASA and SA after 7 days of oral administration of EC-ASA or plain-ASA (100 mg) in healthy volunteers (three men and three women, 37–63 years). Parameters of esterases activity were Vmax 6.5 ± 1.9 and Km 147.5 ± 64.4 in plasma, and Vmax 108.1 ± 20.8 and Km 803.2 ± 170.7 in whole blood. After oral administration of the two formulations, tmax varied between 3 and 6 h for EC-ASA and between 0.5 and 1.0 h for plain-ASA. Higher between-subjects variability was seen after EC-ASA, and one subject had a delayed absorption over eight hours. Plasma AUC was 725.5 (89.8–1222) for EC-ASA, and 823.1(624–1196) ng h/mL (median, 25–75% CI) for plain ASA. After the weekly treatment, serum levels of TxB2 were very low (< 10 ng/mL at 24 h from the drug intake) in all the studied subjects, regardless of the formulation or the tmax. This method proved to be suitable for studies on aspirin responsiveness.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2529
Author(s):  
Haeyeop Kim ◽  
Woo Seok Yang ◽  
Khin Myo Htwe ◽  
Mi-Nam Lee ◽  
Young-Dong Kim ◽  
...  

Dipterocarpus tuberculatus Roxb. has been used traditionally as a remedy for many diseases, especially inflammation. Therefore, we analyzed and explored the mechanism of the anti-inflammatory effect of a Dipterocarpus tuberculatus Roxb. ethanol extract (Dt-EE). Dt-EE clearly and dose-dependently inhibited the expression of pro-inflammatory cytokines such as IL-6, TNF-α, and IL-1β in lipopolysaccharide (LPS)-treated RAW264.7 cells. Also, Dt-EE suppressed the activation of the MyD88/TRIF-mediated AP-1 pathway and the AP-1 pathway related proteins JNK2, MKK4/7, and TAK1, which occurred as a result of inhibiting the kinase activity of IRAK1 and IRAK4, the most upstream factors of the AP-1 pathway. Finally, Dt-EE displayed hepatoprotective activity in a mouse model of hepatitis induced with LPS/D-galactosamine (D-GalN) through decreasing the serum levels of alanine aminotransferase and suppressing the activation of JNK and IRAK1. Therefore, our results strongly suggest that Dt-EE could be a candidate anti-inflammatory herbal medicine with IRAK1/AP-1 inhibitory and hepatoprotective properties.


2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Jean-Philippe Sinnes ◽  
Ulrike Bauder-Wüst ◽  
Martin Schäfer ◽  
Euy Sung Moon ◽  
Klaus Kopka ◽  
...  

Abstract Background The AAZTA chelator and in particular its bifunctional derivative AAZTA5 was recently investigated to demonstrate unique capabilities to complex diagnostic and therapeutic trivalent radiometals under mild conditions. This study presents a comparison of 68Ga, 44Sc and 177Lu-labeled AAZTA5-PSMA-617 with DOTA-PSMA-617 analogues. We evaluated the radiolabeling characteristics, in vitro stability of the radiolabeled compounds and evaluated their binding affinity and internalization behavior on LNCaP tumor cells in direct comparison to the radiolabeled DOTA-conjugated PSMA-617 analogs. Results AAZTA5 was synthesized in a five-step synthesis and coupled to the PSMA-617 backbone on solid phase. Radiochemical evaluation of AAZTA5-PSMA-617 with 68Ga, 44Sc and 177Lu achieved quantitative radiolabeling of > 99% after less than 5 min at room temperature. Stabilities against human serum, PBS buffer and EDTA and DTPA solutions were analyzed. While there was a small degradation of the 68Ga complex over 2 h in human serum, PBS and EDTA/DTPA, the 44Sc and 177Lu complexes were stable at 2 h and remained stable over 8 h and 1 day. For all three compounds, i.e. [natGa]Ga-AAZTA5-PSMA-617, [natSc]Sc-AAZTA5-PSMA-617 and [natLu]Lu-AAZTA5-PSMA-617, in vitro studies on PSMA-positive LNCaP cells were performed in direct comparison to radiolabeled DOTA-PSMA-617 yielding the corresponding inhibition constants (Ki). Ki values were in the range of 8–31 nM values which correspond with those of [natGa]Ga-DOTA-PSMA-617, [natSc]Sc-DOTA-PSMA-617 and [natLu]Lu-DOTA-PSMA-617, i.e. 5–7 nM, respectively. Internalization studies demonstrated cellular membrane to internalization ratios for the radiolabeled 68Ga, 44Sc and 177Lu-AAZTA5-PSMA-617 tracers (13–20%IA/106 cells) in the same range as the ones of the three radiolabeled DOTA-PSMA-617 tracers (17–20%IA/106 cells) in the same assay. Conclusions The AAZTA5-PSMA-617 structure proved fast and quantitative radiolabeling with all three radiometal complexes at room temperature, excellent stability with 44Sc, very high stability with 177Lu and medium stability with 68Ga in human serum, PBS and EDTA/DTPA solutions. All three AAZTA5-PSMA-617 tracers showed binding affinities and internalization ratios in LNCaP cells comparable with that of radiolabeled DOTA-PSMA-617 analogues. Therefore, the exchange of the chelator DOTA with AAZTA5 within the PSMA-617 binding motif has no negative influence on in vitro LNCaP cell binding characteristics. In combination with the faster and milder radiolabeling features, AAZTA5-PSMA-617 thus demonstrates promising potential for in vivo application for theranostics of prostate cancer.


Biomedicines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 615
Author(s):  
Shang-En Huang ◽  
Erna Sulistyowati ◽  
Yu-Ying Chao ◽  
Bin-Nan Wu ◽  
Zen-Kong Dai ◽  
...  

Osteoarthritis is a degenerative arthropathy that is mainly characterized by dysregulation of inflammatory responses. KMUP-1, a derived chemical synthetic of xanthine, has been shown to have anti-inflammatory and antioxidant properties. Here, we aimed to investigate the in vitro anti-inflammatory and in vivo anti-osteoarthritis effects of KMUP-1. Protein and gene expressions of inflammation markers were determined by ELISA, Western blotting and microarray, respectively. RAW264.7 mouse macrophages were cultured and pretreated with KMUP-1 (1, 5, 10 μM). The productions of TNF-α, IL-6, MMP-2 and MMP- 9 were reduced by KMUP-1 pretreatment in LPS-induced inflammation of RAW264.7 cells. The expressions of iNOS, TNF-α, COX-2, MMP-2 and MMP-9 were also inhibited by KMUP-1 pretreatment. The gene expression levels of TNF and COX families were also downregulated. In addition, KMUP-1 suppressed the activations of ERK, JNK and p38 as well as phosphorylation of IκBα/NF-κB signaling pathways. Furthermore, SIRT1 inhibitor attenuated the inhibitory effect of KMUP-1 in LPS-induced NF-κB activation. In vivo study showed that KMUP-1 reduced mechanical hyperalgesia in monoiodoacetic acid (MIA)-induced rats OA. Additionally, KMUP-1 pretreatment reduced the serum levels of TNF-α and IL-6 in MIA-injected rats. Moreover, macroscopic and histological observation showed that KMUP-1 reduced articular cartilage erosion in rats. Our results demonstrated that KMUP-1 inhibited the inflammatory responses and restored SIRT1 in vitro, alleviated joint-related pain and cartilage destruction in vivo. Taken together, KMUP-1 has the potential to improve MIA-induced articular cartilage degradation by inhibiting the levels and expression of inflammatory mediators suggesting that KMUP-1 might be a potential therapeutic agent for OA.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Dezhong Wang ◽  
Yuan Yin ◽  
Shuyi Wang ◽  
Tianyang Zhao ◽  
Fanghua Gong ◽  
...  

AbstractAs a classically known mitogen, fibroblast growth factor 1 (FGF1) has been found to exert other pleiotropic functions such as metabolic regulation and myocardial protection. Here, we show that serum levels of FGF1 were decreased and positively correlated with fraction shortening in diabetic cardiomyopathy (DCM) patients, indicating that FGF1 is a potential therapeutic target for DCM. We found that treatment with a FGF1 variant (FGF1∆HBS) with reduced proliferative potency prevented diabetes-induced cardiac injury and remodeling and restored cardiac function. RNA-Seq results obtained from the cardiac tissues of db/db mice showed significant increase in the expression levels of anti-oxidative genes and decrease of Nur77 by FGF1∆HBS treatment. Both in vivo and in vitro studies indicate that FGF1∆HBS exerted these beneficial effects by markedly reducing mitochondrial fragmentation, reactive oxygen species (ROS) generation and cytochrome c leakage and enhancing mitochondrial respiration rate and β-oxidation in a 5’ AMP-activated protein kinase (AMPK)/Nur77-dependent manner, all of which were not observed in the AMPK null mice. The favorable metabolic activity and reduced proliferative properties of FGF1∆HBS testify to its promising potential for use in the treatment of DCM and other metabolic disorders.


2004 ◽  
Vol 36 (6) ◽  
pp. 419-424 ◽  
Author(s):  
Juan Ma ◽  
Xue-Ling Liao ◽  
Bin Lou ◽  
Man-Ping Wu

Abstract High density lipoprotein (HDL) binds lipopolysaccharide (LPS or endotoxin) and neutralizes its toxicity. We investigated the function of Apolipoprotein A-I (ApoA-I), a major apolipoprotein in HDL, in this process. Mouse macrophages were incubated with LPS, LPS+ApoA-I, LPS+ApoA-I+LFF (lipoprotein-free plasma fraction d>1.210 g/ml), LPS+HDL, LPS+HDL+LFF, respectively. MTT method was used to detect the mortality of L-929 cells which were attacked by the release-out cytokines in LPS-activated macrophages. It was found that ApoA-I significantly decreased L-929 cells mortality caused by LPS treatment (LPS vs. LPS+ApoA-I, P<0.05) and this effect became even more significant when LFF was utilized (LPS vs. LPS+ApoA-I+LFF, P<0.01; LPS vs. LPS+HDL+LFF, P<0.01). There was no significant difference between LPS+ApoA-I+LFF and LPS+HDL+LFF treatment, indicating that ApoA-I was the main factor. We also investigated in vivo effects of ApoA-I on mouse mortality rate and survival time after LPS administration. We found that the mortality in LPS+ApoA-I group (20%) and in LPS+ApoA-I+LFF group (10%) was significantly lower than that in LPS group (80%) (P<0.05, P<0.01, respectively); the survival time was (43.20 ± 10.13) h in LPS+ApoA-I group and (46.80 ± 3.79) h in LPS+ApoA-I+LFF group, which were significantly longer than that in LPS group (16.25 ± 17.28) h (P<0.01). We also carried out in vitro binding study to investigate the binding capacity of ApoA-I and ApoA-I+LFF to fluorescence labeled LPS (FITC-LPS). It was shown that both ApoA-I and ApoA-I+LFF could bind with FITC-LPS, however, the binding capacity of ApoA-I+LFF to FITC-LPS (64.47 ± 8.06) was significantly higher than that of ApoA-I alone (24.35 ± 3.70) (P<0.01). The results suggest that: (1) ApoA-I has the ability to bind with and protect against LPS; (2) LFF enhances the effect of ApoA-I; (3) ApoA-I is the major contributor for HDL anti-endotoxin function.


2008 ◽  
Vol 52 (10) ◽  
pp. 3492-3496 ◽  
Author(s):  
W. A. Craig ◽  
D. R. Andes

ABSTRACT Ceftobiprole medocaril is the parenteral prodrug of ceftobiprole, a novel pyrrolidinone broad-spectrum cephalosporin with in vitro and in vivo bactericidal activities against methicillin-resistant Staphylococcus aureus (MRSA) and penicillin-resistant Streptococcus pneumoniae (PRSP). We have used murine thigh and lung infection models in neutropenic and normal mice to characterize the in vivo pharmacokinetic (PK)-pharmacodynamic (PD) activities of ceftobiprole against multiple strains of S. aureus (including MRSA), S. pneumoniae (including PRSP), and gram-negative bacilli. Serum levels of ceftobiprole following the administration of multiple doses were determined by a microbiological assay. In vivo bactericidal activities and postantibiotic effects (PAEs) of ceftobiprole against MRSA and PRSP strains were determined from serial CFU/thigh values following single doses of ceftobiprole (40 and 160 mg/kg of body weight). Dose fractionation studies were used to determine which PK-PD index correlated best with activity. Magnitudes of the PK-PD indices were calculated from MICs and PK parameters. A sigmoid dose-response model was used to estimate the dose (mg/kg/24 h) required to achieve a static and 2-log10 kill effects over 24 h. PK results showed area under the concentration-time curve/dose values of 1.8 to 2.8 and half-lives of 0.29 to 0.51 h. MICs ranged from 0.015 to 2 μg/ml. Ceftobiprole demonstrated time-dependent killing; its in vivo PAEs varied from 3.8 h to 4.8 h for MRSA and from 0 to 0.8 h for PRSP. The time above MIC (T > MIC) correlated best with efficacy for both MRSA and PRSP. The T > MIC values required for the static doses were significantly longer (P < 0.001) for Enterobacteriaceae (36 to 45%) than for S. aureus (14 to 28%) and S. pneumoniae (15 to 22%). The drug showed activities in the lung model similar to those in the thigh model. The presence of neutrophils significantly enhanced the activity of ceftobiprole against S. pneumoniae but only slightly against Klebsiella pneumoniae. Based on its PD profile, ceftobiprole is a promising new β-lactam agent with activity against gram-negative and gram-positive organisms including MRSA and PRSP.


2018 ◽  
Vol 13 (2) ◽  
pp. 149 ◽  
Author(s):  
Naureen Shehzadi ◽  
Khalid Hussain ◽  
Nadeem Irfan Bukhari ◽  
Muhammad Islam ◽  
Muhammad Tanveer Khan ◽  
...  

<p class="Abstract">The present study aimed at the evaluation of anti-hyperglycemic and hepatoprotective potential of a new drug candidate, 5-[(4-chlorophenoxy) methyl]-1,3,4-oxadiazole-2-thiol (OXCPM) through in vitro and in vivo assays, respectively. The compound displayed excellent dose-dependent ɑ-amylase (28.0-92.0%), ɑ-glucosidase (40.3-93.1%) and hemoglobin glycosylation (9.0%-54.9%) inhibitory effects and promoted the uptake of glucose by the yeast cells (0.2 to 26.3%). The treatment of the isoniazid- and rifampicin- (p.o., 50 mg/kg of each) intoxicated rats with OXCPM (100 mg/kg, p.o.) resulted in restoring the normal serum levels of the non-enzymatic (total bilirubin, total protein and albumin) and bringing about a remarkable decrease in the levels of enzymatic (alanine transaminases, aspartate transaminases and alkaline phosphatase) biomarkers. The molecular docking studies indicated high binding affinity of the compound for hyperglycemia-related protein targets; fructose-1,6-bisphosphatase, beta<sub>2</sub>-adrenergic receptors and glucokinase. The results indicate that OXCPM may not only reduce hyperglycemia by enzyme inhibition but also the disease complications through protection of hemoglobin glycosylation and hepatic injury.</p><p class="Abstract"><strong>Video Clip of Methodology:</strong></p><p class="Abstract">Glucose uptake by yeast cells:   4 min 51 sec   <a href="https://www.youtube.com/v/8cJkuMtV0Wc">Full Screen</a>   <a href="https://www.youtube.com/watch?v=8cJkuMtV0Wc">Alternate</a></p>


Sign in / Sign up

Export Citation Format

Share Document