scholarly journals Mafic Explosive Volcanism at Llaima Volcano

Author(s):  
Pedro Antonio Valdivia-Munoz

Mafic eruptions, which are typically effusive to mildly explosive, can produce much stronger explosive eruptions. Eruption style is determined by the ability of gas to escape through the permeable network. If the permeability is sufficiently high to reduce vesicle overpressure during ascent, the volatiles may escape from the magma, inhibiting violent explosive activity. In contrast, if the permeability is sufficiently low to retain the gas phase within the magma during ascent, bubble overpressure may drive magma fragmentation. Rapid ascent rates may induce disequilibrium crystallization, increasing viscosity and explosivity, and have consequences for the geometry of the vesicle network. Quantitative vesicle texture analyses are commonly measured in 2D. However, 2D vesicle analyses do not provide sufficient information about the internal vesicle structures for permeability analysis. Here we use synchrotron X-ray computed microtomography of 10 pyroclasts from the 12.6 ka mafic Curacautín Ignimbrite (Llaima Volcano, Chile) to reconstruct and quantify pyroclast textures in three dimensions. Our goal is to obtain 3D measurements of porosity, bubble interconnectivity, bubble number density, and geometrical properties of the porous media to investigate the role of magma degassing processes at mafic explosive eruptions. We use an analytical technique to estimate permeability and tortuosity by combing empirical relationships and pyroclasts vesicle textures. We identified two populations of vesicles: (1) a convoluted connected vesicle network produced by extensive coalescence of smaller vesicles (> 99% of pore space), and (2) a population of very small and completely isolated vesicles (< 1% of porosity network). Bubble numbe2r density measurements are 1-29×103 bubbles per mm3, implying an average decompression rate of 1.4 MPa/s under heterogeneous nucleation. We computed tortuosities factor between 1.89 and 4.4, with higher values in the less vesicular samples. Permeability ranges are between 3×10-13 and 6.27×10-12 m2. 3D vesicle textures evidence rapid ascent rates that induced high disequilibrium, promoting rapid syn-eruptive crystallization of microlites and late vesiculation. We propose that the increase in viscosity due to crystallization and vesiculation, combined with rapid ascent, inhibited outgassing and increased bubble overpressures, leading to explosive fragmentation. We estimated that a bubble overpressure greater than 5.2 MPa could have been sufficient to fragment the Curacautín magma. Other mafic explosive eruptions report similar disequilibrium conditions induced by rapid ascent rate, implying that syn-eruptive disequilibrium may control the explosivity of mafic eruptions more generally.

2021 ◽  
Vol 84 (1) ◽  
Author(s):  
Pedro Valdivia ◽  
Aaron A. Marshall ◽  
Brittany D. Brand ◽  
Michael Manga ◽  
Christian Huber

AbstractMafic volcanic activity is dominated by effusive to mildly explosive eruptions. Plinian and ignimbrite-forming mafic eruptions, while rare, are also possible; however, the conditions that promote such explosivity are still being explored. Eruption style is determined by the ability of gas to escape as magma ascends, which tends to be easier in low-viscosity, mafic magmas. If magma permeability is sufficiently high to reduce bubble overpressure during ascent, volatiles may escape from the magma, inhibiting violent explosive activity. In contrast, if the permeability is sufficiently low to retain the gas phase within the magma during ascent, bubble overpressure may drive magma fragmentation. Rapid ascent may induce disequilibrium crystallization, increasing viscosity and affecting the bubble network with consequences for permeability, and hence, explosivity. To explore the conditions that promote strongly explosive mafic volcanism, we combine microlite textural analyses with synchrotron x-ray computed microtomography of 10 pyroclasts from the 12.6 ka mafic Curacautín Ignimbrite (Llaima Volcano, Chile). We quantify microlite crystal size distributions (CSD), microlite number densities, porosity, bubble interconnectivity, bubble number density, and geometrical properties of the porous media to investigate the role of magma degassing processes at mafic explosive eruptions. We use an analytical technique to estimate permeability and tortuosity by combing the Kozeny-Carman relationship, tortuosity factor, and pyroclast vesicle textures. The groundmass of our samples is composed of up to 44% plagioclase microlites, > 85% of which are < 10 µm in length. In addition, we identify two populations of vesicles in our samples: (1) a convoluted interconnected vesicle network produced by extensive coalescence of smaller vesicles (> 99% of pore volume), and (2) a population of very small and completely isolated vesicles (< 1% of porosity). Computed permeability ranges from 3.0 × 10−13 to 6.3 × 10−12 m2, which are lower than the similarly explosive mafic eruptions of Tarawera (1886; New Zealand) and Etna (112 BC; Italy). The combination of our CSDs, microlite number densities, and 3D vesicle textures evidence rapid ascent that induced high disequilibrium conditions, promoting rapid syn-eruptive crystallization of microlites within the shallow conduit. We interpret that microlite crystallization increased viscosity while simultaneously forcing bubbles to deform as they grew together, resulting in the permeable by highly tortuous network of vesicles. Using the bubble number densities for the isolated vesicles (0.1-3−3 × 104 bubbles per mm3), we obtain a minimum average decompression rate of 1.4 MPa/s. Despite the textural evidence that the Curacautín magma reached the percolation threshold, we propose that rapid ascent suppressed outgassing and increased bubble overpressures, leading to explosive fragmentation. Further, using the porosity and permeability of our samples, we estimated that a bubble overpressure > 5 MPa could have been sufficient to fragment the Curacautín magma. Other mafic explosive eruptions report similar disequilibrium conditions induced by rapid ascent rate, implying that syn-eruptive disequilibrium conditions may control the explosivity of mafic eruptions more generally.


Geophysics ◽  
2006 ◽  
Vol 71 (1) ◽  
pp. N11-N19 ◽  
Author(s):  
Ayako Kameda ◽  
Jack Dvorkin ◽  
Youngseuk Keehm ◽  
Amos Nur ◽  
William Bosl

Numerical simulation of laboratory experiments on rocks, or digital rock physics, is an emerging field that may eventually benefit the petroleum industry. For numerical experimentation to find its way into the mainstream, it must be practical and easily repeatable — i.e., implemented on standard hardware and in real time. This condition reduces the size of a digital sample to just a few grains across. Also, small physical fragments of rock, such as cuttings, may be the only material available to produce digital images. Will the results be meaningful for a larger rock volume? To address this question, we use a number of natural and artificial medium- to high-porosity, well-sorted sandstones. The 3D microtomography volumes are obtained from each physical sample. Then, analogous to making thin sections of drill cuttings, we select a large number of small 2D slices from a 3D scan. As a result, a single physical sample produces hundreds of 2D virtual-drill-cuttings images. Corresponding 3D pore-space realizations are generated statistically from these 2D images; fluid flow is simulated in three dimensions, and the absolute permeability is computed. The results show that small fragments of medium– to high-porosity sandstones that are statistically subrepresentative of a larger sample will not yield the exact porosity and permeability of the sample. However, a significant number of small fragments will yield a site-specific permeability-porosity trend that can then be used to estimate the absolute permeability from independent porosity data obtained in the well or inferred from seismic techniques.


1935 ◽  
Vol 31 (2) ◽  
pp. 174-182 ◽  
Author(s):  
H. W. Turnbull

In the early editions of the Geometry of Three Dimensions Salmon had stated that the equations of any three quadric surfaces could be simultaneously reduced to the sums of five squares. Such a reduction is not possible in general, but can be performed if and only if a certain combinant Λ, of the net of quadrics, vanishes. Algebraically the theory of such a net of quadrics is equivalent, as Hesse(2) showed, to that of a plane quartic curve: and the condition for the equation a quartic to be expressible to the sum of five fourth powers is equivalent to the condition Λ = 0(1). While Clebsch(3) was the first to establish this condition, Lüroth(4) gave it more explicit form by studying the quartic curvewhich satisfies the condition. Frahm(5) seems to have been the first to prove the impossibility of the above reduction of three general quadric surfaces, by remarking that the plane quartic curve obtained in Hesse's way from the locus of the vertices of cones of the net of quadrics would be a Lüroth quartic. Frahm further remarked that the three quadrics, so conditioned, could be regarded as the polar quadrics belonging to a cubic surface in ∞2 ways; but that for three general quadrics no such cubic surface exists. An explicit algebraical account of these properties was given by E. Toeplitz(6), who incidentally noticed that certain linear complexes associated with three general quadrics became special linear complexes when Λ = 0. This polar property of three quadrics in [3] was generalized to n dimensions by Anderson (7).


Author(s):  
Charles Sabin ◽  
Pavel Plevka

Hemihedral twinning is a crystal-growth anomaly in which a specimen is composed of two crystal domains that coincide with each other in three dimensions. However, the orientations of the crystal lattices in the two domains differ in a specific way. In diffraction data collected from hemihedrally twinned crystals, each observed intensity contains contributions from both of the domains. With perfect hemihedral twinning, the two domains have the same volumes and the observed intensities do not contain sufficient information to detwin the data. Here, the use of molecular replacement and of noncrystallographic symmetry (NCS) averaging to detwin a 2.1 Å resolution data set forAichi virus 1affected by perfect hemihedral twinning is described. The NCS averaging enabled the correction of errors in the detwinning introduced by the differences between the molecular-replacement model and the crystallized structure. The procedure permitted the structure to be determined from a molecular-replacement model that had 16% sequence identity and a 1.6 Å r.m.s.d. for Cαatoms in comparison to the crystallized structure. The same approach could be used to solve other data sets affected by perfect hemihedral twinning from crystals with NCS.


2007 ◽  
Vol 14 (6) ◽  
pp. 743-755 ◽  
Author(s):  
H. Gaonac'h ◽  
S. Lovejoy ◽  
M. Carrier-Nunes ◽  
D. Schertzer ◽  
F. Lepine

Abstract. The classical models of volcanic eruptions assume that they originate as a consequence of critical stresses or critical strain rates being exceeded in the magma followed by catastrophic fragmentation. In a recent paper (Gaonac'h et al., 2003) we proposed an additional mechanism based on the properties of complex networks of overlapping bubbles; that extreme multibubble coalescence could lead to catastrophic changes in the magma rheology at a critical vesicularity. This is possible because at a critical vesicularity Pc (the percolation threshold), even in the absence of external stresses the magma fragments. By considering 2-D percolation with the (observed) extreme power law bubble distributions, we showed numerically that P2c had the apparently realistic value ≈0.7. The properties of percolating systems are, however, significantly different in 2-D and 3-D. In this paper, we discuss various new features relevant to 3-D percolation and compare the model predictions with empirical data on explosive volcanism. The most important points are a) bubbles and magma have different 3-D critical percolation points; we show numerically that with power law bubble distributions that the important magma percolation threshold P3c,m has the high value ≈0.97±0.01, b) a generic result of 3-D percolation is that the resulting primary fragments will have power law distributions with exponent B3f≈1.186±0.002, near the empirical value (for pumice) ≈1.1±0.1; c) we review the relevant percolation literature and point out that the elastic properties may have lower – possibly more realistic – critical vesicularities relevant to magmas; d) we explore the implications of long range correlations (power law bubble distributions) and discuss this in combination with bubble anisotropy; e) we propose a new kind of intermediate "elliptical" dimensional percolation involving differentially elongated bubbles and show that it can lead to somewhat lower critical thresholds. These percolation mechanisms for catastrophically weakening magma would presumably operate in conjunction with the classical critical stress and critical strain mechanisms. We conclude that percolation theory provides an attractive theoretical framework for understanding highly vesicular magma.


2007 ◽  
Vol 74 (6) ◽  
pp. 1104-1113 ◽  
Author(s):  
A. S. Wall ◽  
R. G. Langlois ◽  
F. F. Afagh

As part of a research project aimed at simulating rotor dynamic response during shipboard rotor startup and shutdown operations, a dynamic model of the ship–helicopter–rotor system that is appropriate for use in predicting rotor elastic response was developed. This planar model consists of a series of rigid bodies connected by rotational stiffness and damping elements that allow motion in the flapwise direction. The rotors were partitioned into an arbitrary number of rigid beam segments having the inertial and geometrical properties of a typical rotor. Helicopter suspension flexibility and damping were also modeled, although the helicopter was otherwise considered as a rigid body. Lagrange’s equation was used to derive the governing dynamic equations for the helicopter–rotor model. The effect of ship motion on blade deflection was also considered. The ship motion supplied as input to the model included representative frigate flight deck motion in three dimensions corresponding to an actual sea spectrum, ship particulars and ship operating conditions. This paper is intended to detail the dynamic approach adopted for this blade sailing study, and its conceptual validation in the planar case. The methodologies that have been developed lend themselves to easy expansion into three dimensions, and into torsion and lead/lag modeling. The amount of blade motion induced by ship motion on nonrotating helicopter blades is included. Although aerodynamic loads are a major contributor to blade sailing, this paper focuses on the dynamics aspect of the problem, and thus does not include aerodynamic effects.


1998 ◽  
Vol 135 (5) ◽  
pp. 605-636 ◽  
Author(s):  
S. E. BRYAN ◽  
J. MARTÍ ◽  
R. A. F. CAS

Explosive volcanism has dominated the large phonolitic shield volcano of Tenerife, the Las Cañadas edifice, for the last 1.5 m.y. Pyroclastic deposits of the Bandas del Sur Formation are exposed along the southern flanks, and record the last two of at least three long-term cycles of caldera-forming explosive eruptions. Each cycle began with flank fissure eruptions of alkali basalt lava, followed by minor eruptions of basanite to phonotephrite lavas. Minor phonotephritic to phonolitic lava effusions also occurred on the flanks of the edifice during the latter stages of the second explosive cycle. Non-welded plinian fall deposits and ignimbrites are the dominant explosive products preserved on the southern flanks. Of these, a significant volume has been dispersed offshore. Many pyroclastic units of the second explosive cycle exhibit compositional zonation. Banded pumice occurs in most units of the third (youngest) explosive cycle, and ignimbrites typically contain mixed phenocryst assemblages, indicating the role of magma mixing/mingling prior to eruption. At least four major eruptions of the third cycle began with phreatomagmatic activity, producing lithic-poor, accretionary lapilli-bearing fallout and/or surge deposits. The repeated, brief phase of phreatomagmatism at the onset of these eruptions is interpreted as reflecting an exhaustive water supply, probably a small caldera lake that was periodically established during the third cycle. Accidental syenite becomes an increasingly important lithic clast type in ignimbrites up-sequence, and is interpreted as recording the progressive development of a plutonic complex beneath the summit caldera.Successive eruptions during each explosive cycle increased in volume, with the largest eruption occurring at the end of the cycle. More than ten major explosive eruptions vented moderately large volumes (1−[ges ]10 km3) of phonolitic magma during the last two cycles. Culminating each explosive cycle was the emplacement of relatively large volume (>5−10 km3) ignimbrites with coarse, vent-derived lithic breccias, interpreted to record a major phase of caldera collapse. In the extracaldera record, explosive cycles are separated by ∼0.2 m.y. periods of non-explosive activity. Repose periods were characterized by erosion, remobilization of pyroclastic deposits by discharge events, and pedogenesis. The current period of non-explosive activity is characterized by the construction of the Teide-Pico Viejo stratovolcanic complex within the summit caldera. This suggests that eruptive hiatuses in the extracaldera record may reflect effusive activity and stratovolcano or shield-building phases within the summit caldera. Alternating effusive and explosive cycles have thus been important in the volcanic evolution of the Las Cañadas edifice.


1991 ◽  
Vol 249 ◽  
Author(s):  
D.P. Bentz ◽  
P.J.P. Pimienta ◽  
E.J. Garboczi ◽  
W.C. Carter

ABSTRACTA cellular automaton algorithm is described that simulates the evolution of a surface driven by the reduction of chemical potential differences on the surface. When the surface tension is isotropic, the chemical potential is proportional to the curvature at the surface. This process is important in the development of microstructure during the sintering of powders. The algorithm is implemented in two and three dimensions in a digital image mode, using discrete pixels to represent continuum objects. The heart of the algorithm is a pixel-counting-based method for computing the potential at a pixel located in a digital surface. This method gives an approximate measure of the curvature at the given surface pixel. The continuum version of this method is analytically shown to give the true curvature at a point on a continuum surface. The digital version of the curvature computation method is shown to obey the scaling laws derived for the continuum version. The evolution of the surface of a three dimensional loosely packed powder, along with the percolation characteristics of its pore space, are computed as an example of the algorithm.


1998 ◽  
Vol 523 ◽  
Author(s):  
P. D. Kinney ◽  
Y. Uritsky ◽  
E. L. Principae ◽  
R. Savoy ◽  
I. Mowat ◽  
...  

AbstractNew analytical techniques are being employed to meet the stringent requirements for controlling defects in semiconductor manufacturing. While SEM/EDX continues to be an effective tool for root-cause analysis of particles and defects on the wafer surface, increasingly it is necessary to employ multiple techniques in analysis of a single defect to obtain sufficient information to resolve the problem. Until recently, this approach was impractical because the defects were too difficult to locate in standard analytical tools, especially on unpatterned wafers. But with the newly developed Mark-Assisted Defect Analysis (MADA) technique, the positioning problem has been eliminated, and it is a simple matter to employ multiple techniques on the same defect. In this paper we present results for defects analyzed by SEM/EDX, TOFSIMS, μ-ESCA, and AUGER, highlighting how these techniques compliment each other. Particular emphasis is given to the issue of the analytical technique changing the sample chemistry and influencing the results of subsequent analysis techniques.


Author(s):  
David A. Rothery

The history of volcanism on Mercury is almost the entire history of the formation of its crust. There are no recognized tracts of intact primary crust analogous to the Moon’s highland crust, probably because the density of Mercury’s iron-poor magma ocean was insufficient to enable crystalized silicate phases to float. Mercury’s surface consists of multiple generations of lavas. These were emplaced, rather like terrestrial “large igneous provinces” or LIPs, in their greatest volumes prior to about 3.5 Ga. Subsequently, erupted volumes decreased, and sites of effusive eruption became largely confined to crater floors. Plains lava surfaces younger than about 3.7 Ga have become scarred by sufficiently few impact craters that they are mapped as “smooth plains.” The older equivalents, which experienced the inner solar system’s “late heavy bombardment,” are mapped as intercrater plains. There is no consensus over whether plains with superimposed-crater characteristics that are intermediate between the smooth plains and intercrater plains end members can be consistently mapped as “intermediate plains.” However, any subdivision of the volcanic plains for mapping purposes arbitrarily splits apart a continuum. The volcanic nature of Mercury’s smooth plains was ambiguous on the basis of the imagery returned by the first mission to Mercury, Mariner 10, which made three fly-bys in 1974–1975. Better and more complete imaging by MESSENGER (in orbit 2011–2015) removed any doubt by documenting innumerable ghost craters and wrinkle ridges. No source vents for the plains are apparent, but this is normal in LIPs where effusion rate and style characteristically flood the vent beneath its own products. However, there are good examples of broad, flat-bottomed valleys containing streamlined islands suggesting passage of fast-flowing low viscosity lava. Although the causes of the mantle partial melting events supplying surface eruptions on Mercury are unclear, secular cooling of a small, one-plate planet such as Mercury would be expected to lead to the sort of temporal decrease in volcanic activity that is observed. Factors include loss of primordial heat and declining rate of radiogenic heat production (both of which would make mantle partial melting progressively harder), and thermal contraction of the planet (closing off ascent pathways). Lava compositions, so far as can be judged from the limited X-ray spectroscopic and other geochemical measurements, appear to be akin to terrestrial komatiites but with very low iron content. Variations within this general theme may reflect heterogeneities in the mantle, or different degrees of partial melting. The cessation of flood volcanism on Mercury is hard to date, because the sizes of the youngest flows, most of which are inside <200-km craters, are too small for reliable statistics to be derived from the density of superposed craters. However, it probably continued until approximately 1 Ga ago. That was not the end of volcanism. MESSENGER images have enabled the identification of over a hundred “pits,” which are noncircular holes up to tens of km in size and up to about 4 km deep. Many pits are surrounded by spectrally red deposits, with faint outer edges tens of km from the pit, interpreted as ejecta from explosive eruptions within the pit. Many pits have complex floors, suggesting vent migration over time. Pits usually occur within impact craters, and it has been suggested that crustal fractures below these craters facilitated the ascent of magma despite the compressive regime imposed by the secular thermal contraction. These explosive eruptions must have been driven by the violent expansion of a gas. This could be either a magmatic volatile expanding near the top of a magma conduit, or result from heating of a near-surface volatile by rising magma. MESSENGER showed that Mercury’s crust is surprisingly rich in volatiles (S, Cl, Na, K, C), of which the one likely to be of most importance in driving the explosive eruptions is S. We do not know when explosive volcanism began on Mercury. Cross-cutting relationships suggest that some explosion pits are considerably less than 1 Ga old, though most could easily be more than 3 Ga. They characteristically occur on top of smooth plains (or less extensive smooth fill of impact craters), and while some pits have no discernible “red spot” around them (perhaps because over time, it has faded into the background), there is no known example of part of a red spot peeping out from beneath the edge of a smooth plains unit. There seems to have been a change in eruptive style over time, with (small volume) explosions supplanting (large volume) effusive events.


Sign in / Sign up

Export Citation Format

Share Document