scholarly journals Mechanisms of Dynamic Deformation and Failure in Ultra-High Molecular Weight Polyethylene Fiber-Polymer Matrix Composites

2014 ◽  
Author(s):  
Mark O'Masta
2016 ◽  
Vol 33 (3) ◽  
Author(s):  
Mica Grujicic ◽  
Jennifer Snipes ◽  
S. Ramaswami ◽  
Vasudeva Avuthu ◽  
Chian-Fong Yen ◽  
...  

Purpose To overcome the problem of inferior through-the-thickness mechanical properties displayed by armor-grade composites based on 2-D reinforcement architectures, armor-grade composites based on 3D fiber-reinforcement architectures have recently been investigated experimentally. Design/methodology/approach The subject of the present work is armor-grade composite materials reinforced using ultra-high-molecular-weight polyethylene fibers and having four (two 2D and two 3D) prototypical architectures, as well as the derivation of the corresponding material models. The effect of the reinforcement architecture is accounted for by constructing the appropriate unit cells (within which the constituent materials and their morphologies are represented explicitly) and subjecting them to a series of virtual mechanical tests. The results obtained are used within a post-processing analysis to derive and parameterize the corresponding homogenized-material models. One of these models (specifically, the one for 0°/90° cross-collimated fiber architecture) was directly validated by comparing its predictions with the experimental counterparts. The other models are validated by examining their physical soundness and details of their predictions. Lastly, the models are integrated as user-material subroutines, and linked with a commercial finite-element package, in order to carry out a transient non-linear dynamics analysis of ballistic transverse impact of armor-grade composite-material panels with different reinforcement architectures. Findings It is found that the reinforcement architecture plays a critical role in the overall ballistic limit of the armor panel, as well as in its structural and damage/failure response. Originality/value To the authors’ knowledge, the present work is the first reported attempt to assess, computationally, the utility and effectiveness of 3D fiber-reinforcement architectures for ballistic impact applications.


2016 ◽  
Vol 1 (1) ◽  
pp. 122 ◽  
Author(s):  
A.A. Okhlopkova ◽  
L.A. Nikiforov ◽  
T.A. Okhlopkova ◽  
R.V. Borisova

<p>Several technologies of the preparation of nanocomposites based on ultra-high-molecular-weight polyethylene were developed. The first technology is based on mechanical activation of layered silicates with surfactant before addition into polymer matrix. The second technology represents mixing of ultra-high-molecular-weight polyethylene with nanoparticles by joint mechanical activation in a planetary mill. The third technology is based on mixing of ultra-high-molecular-weight polyethylene with nanoparticles in liquid media under continuous ultrasonic treatment. Common features of these technologies are reaching of filler uniform distribution in a polymer matrix and significant improvement in the mechanical properties. Also, supramolecular structure of the composites was studied.</p>


2018 ◽  
Vol 52 (21) ◽  
pp. 2961-2972 ◽  
Author(s):  
Mohammad Mohammadalipour ◽  
Mahmood Masoomi ◽  
Mojtaba Ahmadi ◽  
Zahra Kazemi

Nonpolar structure of ultra-high molecular weight polyethylene fiber leads to a weak interfacial adhesion in ultra-high molecular weight polyethylene fiber reinforced epoxy composite. Herein, synchronized fiber and matrix modifications were utilized so as to improve the interfacial adhesion, resulting in promoting mechanical properties of these composites. For this purpose, the surface of ultra-high molecular weight polyethylene fiber was chemically treated with glycidyl methacrylate and the epoxy resin was modified through incorporation of different contents of nanoclay. The mechanical properties results showed that individual modification, either fiber or matrix, can just lead to improvements around 36.74% and 10.54% in tensile strength as well as 14.28% and 4.27% in tensile modulus, respectively. However, the ultimate outcome of the study revealed that much higher improvement can be achieved in synergistic attitude. The highest enhancement around 48.31% and 26.76% in tensile strength and modulus were seen for the sample containing glycidyl methacrylate-treated ultra-high molecular weight polyethylene fibers as reinforcement and nano epoxy modified with 1 wt.% of nanoclay. Such observation could be attributed to the mechanical interlocking and chemical reaction which were arising from incorporation of nanoclay in matrix and chemical treatment of fiber surface, correspondingly. In this regard, fiber roughness and chemical bonds formed between treated fiber and modified matrix play a key role in improving interfacial adhesion. Moreover, the fractured surface of such composites studied by scanning electron microscope confirmed the mechanical results and showed that much more matrix was adhered to the fiber surface after treatment, indicating cohesive failure.


2007 ◽  
Vol 348-349 ◽  
pp. 241-244 ◽  
Author(s):  
Mehmet Colakoglu

Light armors are used to protect people against light weapons for military and nonmilitary purposes such as protecting police and civilians against criminals or protecting people even in hunting. Today, they are usually manufactured from polymer matrix composites due to their high stiffness/weight ratio. The good ballistic property means the measure of absorbability of the kinetic energy of a bullet or projectile without any major injury on the person. Designing the armor for only penetration is not enough for protection. The backside deformation of the armor must be also investigated because the projectile can produce not only bruises and lacerations of the surface of the skin, but can also damage internal organs. In this study, the backside deformation is determined experimentally and analytically for Kevlar 29/Polivnyl Butyral and Polyethylene fiber composites.


Sign in / Sign up

Export Citation Format

Share Document