scholarly journals Displacement of lead from polluted top soil by treatment with HCl or FeCl₃.

1983 ◽  
Vol 31 (3) ◽  
pp. 189-199
Author(s):  
M. Hooghiemstra-Tielbeek ◽  
M.G. Keizer ◽  
F.A.M. de Haan

In batch, column and lysimeter experiments the addition of HCl or FeCl3 to a soil heavily polluted with lead markedly reduced the soil pH and resulted in the dissolution of lead. The amount of lead dissolved from the soil was strongly correlated with the pH of the system: at pH 2.5, 45-65% of the total lead in the soil was extracted in batch experiments. In the lysimeter experiment 77% and 66% of the total lead was displaced from the 0-10 cm soil layer by HCl and FeCl3, respectively. The displaced lead was fixed in the 10-30 cm soil layer. No lead was detected in the effluent. (Abstract retrieved from CAB Abstracts by CABI’s permission)

1993 ◽  
Vol 73 (1) ◽  
pp. 39-50 ◽  
Author(s):  
D. A. Angers ◽  
N. Bissonnette ◽  
A. Légère ◽  
N. Samson

Crop rotations and tillage practices can modify not only the total amount of organic matter (OM) in soils but also its composition. The objective of this study was to determine the changes in total organic C, microbial biomass C (MBC), carbohydrates and alkaline phosphatase activity induced by 4 yr of different rotation and tillage combinations on a Kamouraska clay in La Pocatière, Quebec. Two rotations (continuous barley (Hordeum vulgare L.) versus a 2-yr barley–red clover (Trifolium pratense L.) rotation) and three tillage treatments (moldboard plowing (MP), chisel plowing (CP) and no-tillage (NT)) were compared in a split-plot design. Total organic C was affected by the tillage treatments but not by the rotations. In the top soil layer (0–7.5 cm), NT and CP treatments had C contents 20% higher than the MP treatment. In the same soil layer, MBC averaged 300 mg C kg−1 in the MP treatment and up to 600 mg C kg−1 in the NT soil. Hot-water-extractable and acid-hydrolyzable carbohydrates were on average 40% greater under reduced tillage than under MP. Both carbohydrate fractions were also slightly larger in the rotation than in the soil under continuous barley. The ratios of MBC and carbohydrate C to total organic C suggested that there was a significant enrichment of the OM in labile forms as tillage intensity was reduced. Alkaline phosphatase activity was 50% higher under NT and 20% higher under CP treatments than under MP treatment and, on average, 15% larger in the rotation than in the continuous barley treatment. Overall, the management-induced differences were slightly greater in the top layer (0–7.5 cm) than in the lower layer of the Ap horizon (7.5–15 cm). All the properties measured were highly correlated with one another. They also showed significant temporal variations that were, in most cases, independent of the treatments. Four years of conservation tillage and, to a lesser extent, rotation with red clover resulted in greater OM in the top soil layer compared with the more intensive systems. This organic matter was enriched in labile forms. Key words: Soil management, soil quality, organic matter, carbohydrates, microbial biomass, phosphatase


2017 ◽  
Vol 18 (7) ◽  
pp. 2029-2042
Author(s):  
Tony E. Wong ◽  
William Kleiber ◽  
David C. Noone

Abstract Land surface models are notorious for containing many parameters that control the exchange of heat and moisture between land and atmosphere. Properly modeling the partitioning of total evapotranspiration (ET) between transpiration and evaporation is critical for accurate hydrological modeling, but depends heavily on the treatment of turbulence within and above canopies. Previous work has constrained estimates of evapotranspiration and its partitioning using statistical approaches that calibrate land surface model parameters by assimilating in situ measurements. These studies, however, are silent on the impacts of the accounting of uncertainty within the statistical calibration framework. The present study calibrates the aerodynamic, leaf boundary layer, and stomatal resistance parameters, which partially control canopy turbulent exchange and thus the evapotranspiration flux partitioning. Using an adaptive Metropolis–Hastings algorithm to construct a Markov chain of draws from the joint posterior distribution of these resistance parameters, an ensemble of model realizations is generated, in which latent and sensible heat fluxes and top soil layer temperature are optimized. A set of five calibration experiments demonstrate that model performance is sensitive to the accounting of various sources of uncertainty in the field observations and model output and that it is critical to account for model structural uncertainty. After calibration, the modeled fluxes and top soil layer temperature are largely free from bias, and this calibration approach successfully informs and characterizes uncertainty in these parameters, which is essential for model improvement and development. The key points of this paper are 1) a Markov chain Monte Carlo calibration approach successfully improves modeled turbulent fluxes; 2) ET partitioning estimates hinge on the representation of uncertainties in the model and data; and 3) despite these inherent uncertainties, constrained posterior estimates of ET partitioning emerge.


2009 ◽  
Vol 13 (3) ◽  
pp. 257-261 ◽  
Author(s):  
Adriana L. da Silva ◽  
Isabeli P. Bruno ◽  
Klaus Reichardt ◽  
Osny O. S. Bacchi ◽  
Durval Dourado-Neto ◽  
...  

Basic information for a rational soil-water management of the coffee crop is still insufficient, particularly under irrigated conditions. Of great importance for the estimation of water requirements of coffee crops are their root distribuition and evapotranspiration crop coefficients. This study compares soil water extraction by roots of coffee plants of the variety "Catuaí Vermelho" (IAC-44), grown in Piracicaba, SP, Brazil, 3 to 5 years old, with direct measurements of root dry matter, showing a good agreement between both approaches, and confirming that most of the root system is distributed in the top soil layer (0-0.3 m) and that less than 10% of the root system reaches depths greater than 1.0 m. Calculated evapotranspiration crop coefficients are in agreement with those found in the literature, with an average of 1.1, independent of shoot dry matter, plant height and leaf area index.


Author(s):  
Wen Gao ◽  
Tom Harrup ◽  
Yuxia Hu ◽  
David White

The rapid penetration of one or more of the foundations of a mobile jack-up rig into the seabed is an ongoing major problem in the offshore industry, with the potential to cause major damage to the structure and endangering any personnel on board. A recent example is the jack-up drilling rig Perro Negro 6 incident happened near the mouth of the Congo river in July 2013 with one of the rig’s crew of 103 reported missing and six others injured. This uncontrollable displacement is due to a form of failure known as punch through failure and commonly occurs on stratified seabed profiles. It has been reported that unexpected punch-through accidents have resulted in both rig damage and lost drilling time at a rate of 1 incident per annum with consequential costs estimated at between US$1 and US$10 million [1]. This paper presents the bearing capacity profiles and associated soil flow mechanisms of a common spudcan foundation penetrating into a three layer soft-stiff-soft clay soil through the use of large deformation finite element (LDFE) analysis. The Remeshing and Interpolation with Small Strain (RITSS) [2, 3] technique was implemented in the software package AFENA [4] to conduct the LDFE analysis. Both soil layer thickness and soil layer strength ratios were varied to study their effect on the spudcan penetration responses. The LDFE results of spudcan penetration into the soft-stiff-soft clay soils were calibrated by existing centrifuge test data. A parametric study was then conducted to study the bearing capacity responses and soil flow mechanisms during spudcan large penetrations by varying the soil layer strength ratio and relative layer thickness to the diameter of spudcan. It was found that there were three types of bearing responses during continuous penetration of spudcan: (a) when the top soft layer is relatively thin, the spudcan bearing response was similar to that of two layer soils with stiff over soft clays; (b) when the top soil layer thickness is medium, a peak resistance is observed when spudcan penetrates into the middle stiff layer followed by reduction; (c) when the soil layer is thick, the peak resistance occurs when spudcan gets into the bottom soft soil layer. The critical thickness of top soil layer is a function of soil strength ratio and middle stiff soil layer thickness. The bearing response types were also corresponding to the soil cavity formations during spudcan initial penetration.


2008 ◽  
Vol 72 (1) ◽  
pp. 251-256 ◽  
Author(s):  
C. de Bodt ◽  
J. Harlay ◽  
L. Chou

AbstractCoccolithophores, among which Emiliania huxleyi is the most abundant and widespread species, are considered the most productive calcifying organism on earth. The export of organic carbon and calcification are the main drivers of the biological CO2 pump and are expected to change with oceanic acidification. Coccolithophores are further known to produce transparent exopolymer particles (TEP) that promote particle aggregation. As a result, the TEP and biogenic calcium carbonate (CaCO3) contribute to the export of carbon from the surface ocean to deep waters. In this context, we followed the development and the decline of E. huxleyi using batch experiments with monospecific cultures. We studied the link between different processes such as photosynthesis, calcification and the production of TEP. The onset of calcification was delayed in relation to photosynthesis. The timing and the general feature of the dynamics of calcification were closely related to the saturation state of seawater with respect to calcite, Ωcal. The production of TEP was enhanced after the decline of phytoplankton growth. After nutrient exhaustion, particulate organic carbon (POC) concentration increased linearly with increasing TEP concentration, suggesting that TEP contributes to the POC increase. The production of CaCO3 is also strongly correlated with that of TEP, suggesting that calcification may be considered as a source of TEP precursors.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Zhen Li ◽  
Jan Vanderborght ◽  
Kathleen M. Smits

2018 ◽  
Vol 73 ◽  
pp. 03006
Author(s):  
Dhita Prasisca Mutiatari ◽  
Rudhi Pribadi ◽  
Nana Kariada Tri Martuti

Mangrove ecosystem plays important role as carbon sink, not only on mangrove community but also on the top soil. The purposes of this research were 1) to estimates and compare C-stocks in vegetation and non-vegetation mangrove soils (represented by aquaculture ponds and mudflats); 2) modeling the spatial distribution of soil C-stocks in the study area. The purposive sampling method was used to determine 16 sample plots representing vegetation and non-vegetation mangroves. In each plot, the soil samples were taken on top soil layer (0-10 cm). For general display of spatial distribution maps of soil C-stocks, spatial interpolation is used by the Ordinary Kriging method. The result showed that total of soil C-stocks in coastal area of Trimulyo was 148.53 MgC ha-1, with composition of 53.59% in mangrove vegetation, 38.82% and 7.57% in cultivation pond and mudflat, respectively. Statistical analysis with ANOVA test showed no significant difference (ρ = 0.972) between soil C stock in vegetation and non-vegetation mangrove. It shows that the water column on the coast of Trimulyo has great potential as a carbon store.


2003 ◽  
Vol 30 (6) ◽  
pp. 699 ◽  
Author(s):  
Eric Lebon ◽  
Vincent Dumas ◽  
Philippe Pieri ◽  
Hans R. Schultz

A geometrical canopy model describing radiation absorption (Riou et al. 1989, Agronomie 9, 441–450) and partitioning between grapevines (Vitis vinifera L.) and soil was coupled to a soil water balance routine describing a bilinear change in relative transpiration rate as a function of the fraction of soil transpirable water (FTSW). The model was amended to account for changes in soil evaporation after precipitation events and subsequent dry-down of the top soil layer. It was tested on two experimental vineyards in the Alsace region, France, varying in soil type, water-holding capacity and rooting depth. Simulations were run over four seasons (1992–1993, 1995–1996) and compared with measurements of FTSW conducted with a neutron probe. For three out of four years, the model simulated the dynamics in seasonal soil water balance adequately. For the 1996 season soil water content was overestimated for one vineyard and underestimated for the other. Sensitivity analyses revealed that the model responded strongly to changes in canopy parameters, and that soil evaporation was particularly sensitive to water storage of the top soil layer after rainfall. We found a close relationship between field-average soil water storage and pre-dawn water potential, a relationship which could be used to couple physiological models of growth and / or photosynthesis to the soil water dynamics.


Author(s):  
Marina KONSTANTINOVA ◽  
Nina PROKOPČIUK ◽  
Arūnas GUDELIS ◽  
Donatas BUTKUS

The quantitative assessment of radionuclides transfer to non-human biota using their activity concentration ratios is required for models of predictive doses of ionizing radiation. Based on long-term data regarding activity concentration of radionuclides in the top soil layer of the entire territory of Lithuania, and with the help of ERICA Assessment Tool – a software application that calculates dose rates to selected biota, we estimated the radiological impact on the terrestrial non-human biota with special emphasis on the protected areas located in the vicinity of Ignalina Nuclear Power Plant (INPP). Estimated total dose rates of artificial radionuclides – after-Chernobyl 137Cs and 90Sr as well as discharged by INPP – and natural radionuclides, such as 238U and 232Th, were found to be less than ERICA screening value of 10 μGy h–1.


Sign in / Sign up

Export Citation Format

Share Document