scholarly journals C Stock of Top Soil and It Spatial Distribution in Mangrove Community of Trimulyo, Semarang City

2018 ◽  
Vol 73 ◽  
pp. 03006
Author(s):  
Dhita Prasisca Mutiatari ◽  
Rudhi Pribadi ◽  
Nana Kariada Tri Martuti

Mangrove ecosystem plays important role as carbon sink, not only on mangrove community but also on the top soil. The purposes of this research were 1) to estimates and compare C-stocks in vegetation and non-vegetation mangrove soils (represented by aquaculture ponds and mudflats); 2) modeling the spatial distribution of soil C-stocks in the study area. The purposive sampling method was used to determine 16 sample plots representing vegetation and non-vegetation mangroves. In each plot, the soil samples were taken on top soil layer (0-10 cm). For general display of spatial distribution maps of soil C-stocks, spatial interpolation is used by the Ordinary Kriging method. The result showed that total of soil C-stocks in coastal area of Trimulyo was 148.53 MgC ha-1, with composition of 53.59% in mangrove vegetation, 38.82% and 7.57% in cultivation pond and mudflat, respectively. Statistical analysis with ANOVA test showed no significant difference (ρ = 0.972) between soil C stock in vegetation and non-vegetation mangrove. It shows that the water column on the coast of Trimulyo has great potential as a carbon store.

Forests ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1300
Author(s):  
Xiaogang Ding ◽  
Xiaochuan Li ◽  
Ye Qi ◽  
Zhengyong Zhao ◽  
Dongxiao Sun ◽  
...  

Stocks and stoichiometry of carbon (C), nitrogen (N), and phosphorus (P) in ultisols are not well documented for converted forests. In this study, Ultisols were sampled in 175 plots from one type of secondary forest and four plantations of Masson pine (Pinus massoniana Lamb.), Slash pine (Pinus elliottii Engelm.), Eucalypt (Eucalyptus obliqua L’Hér.), and Litchi (Litchi chinensis Sonn., 1782) in Yunfu, Guangdong province, South China. Five layers of soil were sampled with a distance of 20 cm between two adjacent layers up to a depth of 100 cm. We did not find interactive effects between forest type and soil layer depth on soil organic carbon (SOC), total nitrogen (TN), and total phosphorus (TP) concentrations and storages. Storage of SOC was not different between secondary forests and Eucalypt plantations, but SOC of these two forest types were lower than that in Litchi, Masson pine, and Slash pine plantations. Soil C:P was higher in Slash pine plantations than in secondary forests. Soil CNP showed a decreasing trend with the increase of soil depth. Soil TP did not show any significant difference among soil layers. Soil bulk density had a negative contribution to soil C and P stocks, and longitude and elevation were positive drivers for soil C, N, and P stocks. Overall, Litchi plantations are the only type of plantation that obtained enhanced C storage in 0–100 cm soils and diverse N concentrations among soil layers during the conversion from secondary forests to plantations over ultisols.


2015 ◽  
Vol 12 (5) ◽  
pp. 1615-1627 ◽  
Author(s):  
J. D. M. Speed ◽  
V. Martinsen ◽  
A. J. Hester ◽  
Ø. Holand ◽  
J. Mulder ◽  
...  

Abstract. Treelines differentiate vastly contrasting ecosystems: open tundra from closed forest. Treeline advance has implications for the climate system due to the impact of the transition from tundra to forest ecosystem on carbon (C) storage and albedo. Treeline advance has been seen to increase above-ground C stocks as low vegetation is replaced with trees but decrease organic soil C stocks as old carbon is decomposed. However, studies comparing across the treeline typically do not account for elevational variation within the ecotone. Here we sample ecosystem C stocks along an elevational gradient (970 to 1300 m), incorporating a large-scale and long-term livestock grazing experiment, in the southern Norwegian mountains. We investigate whether there are continuous or discontinuous changes in C storage across the treeline ecotone, and whether these are modulated by grazing. We find that vegetation C stock decreases with elevation, with a clear breakpoint between the forest line and treeline above which the vegetation C stock is constant. C stocks in organic surface horizons of the soil were higher above the treeline than in the forest, whereas C stocks in mineral soil horizons are unrelated to elevation. Total ecosystem C stocks also showed a discontinuous elevational pattern, increasing with elevation above the treeline (8 g m−2 per metre increase in elevation), but decreasing with elevation below the forest line (−15 g m−2 per metre increase in elevation), such that ecosystem C storage reaches a minimum between the forest line and treeline. We did not find any effect of short-term (12 years) grazing on the elevational patterns. Our findings demonstrate that patterns of C storage across the treeline are complex, and should be taken account of when estimating ecosystem C storage with shifting treelines.


2011 ◽  
Vol 41 (7) ◽  
pp. 1380-1393 ◽  
Author(s):  
Colin J. Ferster ◽  
J.A. (Tony) Trofymow ◽  
Nicholas C. Coops ◽  
Baozhang Chen ◽  
T. Andrew Black ◽  
...  

An important consideration when interpreting eddy-covariance (EC) flux-tower measurements is the spatial distribution of forest land surface cover and soil type within the EC flux-tower footprint. At many EC flux-tower sites, there is a range of geospatial data available with the ability to estimate the spatial distribution of forest land cover and soils. Developing methods that utilize multiple geospatial data sets will result in more thorough estimates of ecosystem C stock distributions. The objective of this study was to develop, apply, and validate methods to obtain comprehensive estimates of the spatial distribution of ecosystem C stock components from live-tree, detritus, and soil pools within an EC flux-tower footprint. First, a set of geospatial data sets was collected and assessed for its predictive ability for the measured aboveground C stocks. Next, large tree and snag aboveground C stocks were estimated using two methods: (i) a geospatial regression model, and (ii) most similar neighbor (k-MSN) spatial prediction methodology, and the results were compared with those of a multiple linear regression model using light detection and ranging (LiDAR) data alone. Finally, we applied the spatial prediction methodology to estimate the spatial distribution of other C stock components (including soil C and woody debris).


2020 ◽  
Author(s):  
David Lefebvre ◽  
Jeroen Meersmans ◽  
Guy Kirk ◽  
Adrian Williams

<p>Harvesting sugarcane (Saccharum officinarum) produces large quantities of biomass residues. We investigated the potential for converting these residues into biochar (recalcitrant carbon rich material) for soil carbon (C) sequestration. We modified a version of the RothC soil carbon model to follow changes in soil C stocks considering different amounts of fresh sugarcane residues and biochar (including recalcitrant and labile biochar fractions). We used Sao Paulo State (Brazil) as a case study due to its large sugarcane production and associated soil C sequestration potential.</p><p>Mechanical harvesting of sugarcane fields leaves behind > 10 t dry matter of trash (leaves) ha<sup>-1</sup> year<sup>-1</sup>. Although trash blanketing increases soil fertility, an excessive amount is detrimental and reduces the subsequent crop yield. After the optimal trash blanketing amount, sugarcane cultivation still produces 5.9 t C ha<sup>-1</sup> year<sup>-1</sup> of excess trash and bagasse (processing residues) which are available for subsequent use.</p><p>The available residues could produce 2.5 t of slow-pyrolysis (550°C) biochar C ha<sup>-1</sup> year<sup>-1</sup>. The model predicts this could increase sugarcane field soil C stock on average by 2.4 ± 0.4 t C ha<sup>‑1</sup> year<sup>‑1</sup>, after accounting for the climate and soil type variability across the State. Comparing different scenarios, we found that applying fresh residues into the field results in a smaller increase in soil C stock compared to the biochar because the soil C approaches a new equilibrium. For instance, adding 1.2 t of biochar C ha<sup>‑1</sup> year<sup>‑1</sup> along with 3.2 t of fresh residue C ha<sup>‑1</sup> year<sup>‑1 </sup>increased the soil C stock by 1.8 t C ha<sup>‑1</sup> year<sup>‑1 </sup>after 10 years of repeated applications. In contrast, adding 0.62 t of biochar C ha<sup>‑1</sup> year<sup>‑1</sup> with 4.5 t of fresh sugarcane residues C ha<sup>‑1</sup> year<sup>‑1 </sup>increased the soil carbon soil stock by 1.4 t C ha<sup>‑1</sup> year<sup>‑1</sup> after 10 years of application. These are reductions 25% and 40% of the potential soil C accumulation rates compared with applying available residues as biochar.   </p><p>We also tested the sensitivity of the model to biochar-induced positive priming (i.e. increased mineralization of soil organic C) using published values. This showed that the C sequestration balance remains positive over the long term, even considering an extremely high positive-priming factor. Upscaling our results to the total 5 Mha of sugarcane in Sao Paulo State, biochar application could sequester up to 50 Mt of CO<sub>2</sub> equivalent per year, representing 31% of the emissions attributed to the State in 2016.</p><p>This study provides first insights into the sequestration potential of biochar application on sugarcane fields. Measurements of changes in soil C stocks in sugarcane field experiments are needed to further validate the model, and the emissions to implement the practice at large scale need to be taken into account. As the climate crisis grows, the need for greenhouse gas removal technologies becomes crucial. Assessing the net effectiveness of readily available technologies is essential to guide policy makers.  </p>


2019 ◽  
Vol 20 (6) ◽  
Author(s):  
JERIELS MATATULA ◽  
ERNY POEDJIRAHAJOE ◽  
SATYAWAN PUDYATMOKO ◽  
RONGGO SADONO

Abstract. Matatula J, Poedjirahajoe E, Pudyatmoko S, Sadono R. 2019. Spatial distribution of salinity, mud thickness and slope along mangrove ecosystem of the coast of Kupang District, East Nusa Tenggara, Indonesia. Biodiversitas 20: 1624-1632. Mangrove ecosystem is suffering from continuous damage in terms of quality as well as quantity. Rapid mangrove conversion triggered by the ever-growing human population and activities have affected them adversely and caused mangrove deterioration in the coastal areas of Kupang District, Indonesia. The decline of quality and quantity of mangrove environment has caused highly alarming effects, such as an increase in abrasion, decrease of marine products, and sea-water intrusion. Although various efforts have been deployed for the rehabilitation of mangrove forests, there are no significant results yet. One of the reasons is such efforts are not based on scientific data on suitability of the physico-chemical conditions of the mangrove habitats. The objectives of this study was to analyse the physico-chemical conditions, such as salinity, mud thickness and slope of five selected mangrove locations, namely Tarus, Mata Air, Tanah Merah, Oebelo and Merdeka in Kupang District by systematic sampling method and to prepare spatial distribution maps for each of these parameters. Salinity conditions showed a wide variation in the study locations, starting from 10 ppm to 38.33 ppm. Mud thickness ranged from 20.11 cm to 84.77 cm in the entire study area. The highest mud thickness of 84.77 cm was found in Tanah Merah, followed by Oebelo with the maximum thickness of 74.66 cm, Mata Air with 56.22 cm, Merdeka with 53.66 cm, and the lowest mud thickness was in Tarus with 53.55 cm. Mangrove locations in Kupang District are dominated with 2-3% slope. The study indicated that the habitat conditions in the coastal area of Kupang District are suitable for the growth of mangroves. This study will also provide the basis to plan future mangrove rehabilitation programs in the study area.


2018 ◽  
Vol 13 (1) ◽  
pp. 53
Author(s):  
Maísa Honório Belizário ◽  
Gregori Da Encarnação Ferrão ◽  
Carlos Clemente Cerri ◽  
Marcos Siqueira Neto

<p>Land-use change (LUC) is one of the main responsible for the loss of soil organic matter (SOM) in the form of CO<sub>2</sub> to atmosphere. The aims of the present study were i) evaluate soil C stocks due to coffee cultivation time after LUC and ii) evaluate the use of the organic compost from the by-product of bean processing as a source of SOM. The study was performed in dystrophic red latosol in the municipality of Patrocínio, MG, Brazil. Two evaluations were performed; i) three coffee (<em>Coffea arabica </em>L. var. Icatú Vermelho) growing areas with different implantation times (8, 15 and 37 years) in relation to Cerrado <em> stricto sensu <em> (reference); and ii) area cultivated with coffee (<em> C. arabica </em> var. Bourbon Vermelho) that received organic compost for four years. Soil was sampled in layers 0-5, 5-10 and 10-20 cm. In the first study, the C stock (0-20 cm) was higher under native vegetation (67 Mg C ha<sup>-1</sup>) in relation to the coffee growing (63 Mg C ha<sup>-1</sup>), however, did not differ significantly and showed subtle loss rates of 0.12; 0.06 and 0.02 Mg C ha<sup>-1</sup> year<sup>-1</sup> for 8, 15 and 37 years, respectively. In the second study, the organic compost applied to the soil increased the C stock (0-20 cm) to 4.6 Mg C ha<sup>-1</sup> and showed an accumulation rate of 1.15 Mg C ha<sup>-1</sup> year<sup>-1</sup>. Thus, it is concluded that C stocks is reduced in the soil due to LUC, however, the application of organic compost increased the supply of organic material, favoring the maintenance and even increasing the stock in the soil.</em></em></p>


2015 ◽  
Vol 39 (5) ◽  
pp. 1378-1385
Author(s):  
Anderson Ribeiro Diniz ◽  
Marcos Gervasio Pereira ◽  
Fabiano de Carvalho Balieiro ◽  
Eduardo Vinicius da Silva ◽  
Felipe Martini Santos ◽  
...  

ABSTRACT Rubber tree (Hevea brasiliensis) crop may accumulate significant amounts of carbon either in biomass or in the soil. However, a comprehensive understanding of the potential of the C stock among different rubber tree clones is still distant, since clones are typically developed to exhibit other traits, such as better yield and disease tolerance. Thus, the aim of this study was to address differences among different areas planted to rubber clones. We hypothesized that different rubber tree clones, developed to adapt to different environmental and biological constrains, diverge in terms of soil and plant biomass C stocks. Clones were compared in respect to soil C stocks at four soil depths and the total depth (0.00-0.05, 0.05-0.10, 0.10-0.20, 0.20-0.40, and 0.00-0.40 m), and in the different compartments of the tree biomass. Five different plantings of rubber clones (FX3864, FDR 5788, PMB 1, MDX 624, and CDC 312) of seven years of age were compared, which were established in a randomized block design in the experimental field in Rio de Janeiro State. No difference was observed among plantings of rubber tree clones in regard to soil C stocks, even considering the total stock from 0.00-0.40 m depth. However, the rubber tree clones were different from each other in terms of total plant C stocks, and this contrast was predominately due to only one component of the total C stock, tree biomass. For biomass C stock, the MDX 624 rubber tree clone was superior to other clones, and the stem was the biomass component which most accounted for total C biomass. The contrast among rubber clones in terms of C stock is mainly due to the biomass C stock; the aboveground (tree biomass) and the belowground (soil) compartments contributed differently to the total C stock, 36.2 and 63.8 %, respectively. Rubber trees did not differ in relation to C stocks in the soil, but the right choice of a rubber clone is a reliable approach for sequestering C from the air in the biomass of trees.


Forests ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 660
Author(s):  
Pham Hong Tinh ◽  
Nguyen Thi Hong Hanh ◽  
Vo Van Thanh ◽  
Mai Sy Tuan ◽  
Pham Van Quang ◽  
...  

Background and Objectives: In northern Vietnam, nearly 37,100 hectares of mangroves were lost from 1964–1997 due to unsustainable harvest and deforestation for the creation of shrimp aquaculture ponds. To offset these losses, efforts in the late 1990s have resulted in thousands of hectares of mangroves being restored, but few studies to date have examined how effective these efforts are at creating restored mangrove forests that function similarly to the intact mangroves they are intended to replace. Materials and Methods: We quantified and compared soil carbon (C) stocks among restored (mono and mixed species) and intact mangrove forests in the provinces of Quang Ninh, Thai Binh, Nam Dinh and Thanh Hoa in northern Vietnam. A total of 96 soil cores up to a depth of 200 cm were collected every 25 m (25, 50, 75, 100, 125, and 150 m) along 16 linear transects that were 150 m long and perpendicular to the mangrove upland interface (six cores along each transect) at Quang Ninh (four transects), Thai Binh (five), Nam Dinh (four) and Thanh Hoa (three). Five-cm-long soil samples were then collected from the 0–15 cm, 15–30 cm, 30–50 cm, 50–100 cm, and >100 cm depth intervals of each soil core. Results: The study confirmed that the soil C stock of 20–25-year-old restored mangrove forest (217.74 ± 16.82 Mg/ha) was not significantly different from that of intact mangrove forest (300.68 ± 51.61 Mg/ha) (p > 0.05). Soil C stocks of Quang Ninh (323.89 ± 28.43 Mg/ha) were not significantly different from Nam Dinh (249.81 ± 19.09 Mg/ha), but both of those were significantly larger than Thai Binh (201.42 ± 27.65 Mg/ha) and Thanh Hoa (178.98 ± 30.82 Mg/ha) (p < 0.05). Soil C stock differences among provinces could be due to their different geomorphological characteristics and mangrove age. Soil C stocks did not differ among mangroves that were restored with mixed mangrove species (289.75 ± 33.28 Mg/ha), Sonneratia caseolaris (L.) Engl. (255.67 ± 13.11 Mg/ha) or Aegiceras corniculatum (L.) Blanco (278.15 ± 43.86 Mg/ha), but soil C stocks of those mangroves were significantly greater than that of Kandelia obovata Sheue, Liu & Yong (174.04 ± 20.38 Mg/ha) (p < 0.05). Conclusion: There were significant differences in the soil C stocks of mangrove forests among species and provinces in northern Vietnam. The soil C stock of 20–25-year-old restored mangrove forest was not significantly different from that of intact mangrove forest.


2016 ◽  
Vol 16 ◽  
pp. 197-202
Author(s):  
G.B. Douglas ◽  
R.E. Vibart ◽  
A.D. Mackay ◽  
M.B. Dodd ◽  
I.R. Mcivor

Wide-spaced trees on pastoral land (pasture-tree (PT) systems) are a widespread feature of many farmed landscapes. They offer the potential to increase carbon (C) storage, with implications for reducing atmospheric CO2-C. The effect of PT systems on soil C stocks to 1 m depth was determined for trees aged 14-16 years at densities of 73-111 stems per hectare at four North Island sites (two with poplar, two with alder). Across sites, mean soil C concentration was 1.9-8.5% and mean total soil C mass was 120-455 tonnes C/ha. For alder systems, total C mass of PT was 37% less than adjacent pasture (Open) at Poukawa (120 versus 189 tonnes C/ha), whereas at Ruakura, there was no significant difference between systems. Total C mass of PT systems involving poplar did not vary significantly from adjacent Open systems at Tikokino (328 versus 352 tonnes C/ha) and Woodville (154 versus 202 tonnes C/ha). Soil at 0.3-1.0 m depth comprised up to half of total C mass. Results suggested that poplar and alder had different effects on soil C. Keywords: pastoral hill country, wide-spaced trees, carbon sequestration, greenhouse gas (GHG) mitigation


Soil Research ◽  
2017 ◽  
Vol 55 (7) ◽  
pp. 640 ◽  
Author(s):  
A. M. Silva-Olaya ◽  
C. A. Davies ◽  
C. E. P. Cerri ◽  
D. J. Allen ◽  
F. F. C. Mello ◽  
...  

Expansion of sugarcane crop due to the increasing demand for sugar and ethanol can affect both existing soil carbon (C) stocks, and subsequent input of new C from above and belowground biomass, influencing the overall C intensity and C payback times due to the change of land use. We present above and belowground dry biomass production, shoot-to-root ratio (S:R) as well as the net annual C inputs to the soil for sugarcane in different ratoon stages. The selected areas were as follows: (1) recently planted sugarcane area (PC), (2) first year ratoon cane (RC1) and (3) 4-year ratoon cane (RC4), which were established under Typic Quartzipsamments located in north-eastern São Paulo State. The sugarcane S:R ratios ranged from 6.6 in PC to 3.4 in RC4, and total sugarcane C inputs from 29.6 to 30.8 Mg C ha–1. The overall C balance for land use change requires effects on soil C and also C inputs from previous and future land uses. The sugarcane C input was between 3.7 and 4.0 Mg C ha–1 for each sugarcane cycle of 5 years. When accounting for soil C stock changes and aboveground biomass C losses from the prior land use, the payback times for sugarcane biofuel C debts are reduced by 3, 2 and 1 years for Cerrado wooded, Cerrado grassland and pasture conversions into sugarcane respectively.


Sign in / Sign up

Export Citation Format

Share Document