scholarly journals Computational Fluid Dynamics (CFD) as a tool for the analysis of ventilation and indoor microclimate in agricultural buildings

1997 ◽  
Vol 45 (1) ◽  
pp. 81-96 ◽  
Author(s):  
A. Mistriotis ◽  
T. De Jong ◽  
M.J.M. Wagemans ◽  
G.P.A. Bot

The basic concepts of CFD are presented in relation to applications in modelling the ventilation process and the resulting indoor climate of agricultural buildings. The validity and the advantages of this numerical technique are presented using 3 examples. Firstly the pressure coefficients along the roof of a 7-span Venlo-type greenhouse were calculated and compared with the corresponding experimental values. Next, the ventilation process in a single-span greenhouse was investigated and the results were compared to laboratory experiments. Finally, the use of CFD as a design tool for more efficient ventilation systems was demonstrated for the case of a broiler house.

Author(s):  
Sunita Kruger ◽  
Leon Pretorius

In this paper, the use of computational fluid dynamics is evaluated as a design tool to investigate the indoor climate of a confined greenhouse. The finite volume method using polyhedral cells is used to solve the governing mass, momentum and energy equations. Natural convection in a cavity corresponding to a mono-span venlo-type greenhouse is numerically investigated using Computational Fluid Dynamics. The CFD model is designed so as to simulate the climate above a plant canopy in an actual multi-span greenhouse heated by solar radiation. The aim of this paper is to investigate the influence of various design parameters such as pitch angle and roof asymmetry and on the velocity and temperature patterns inside a confined single span greenhouse heated from below. In the study reported in this paper a two-dimensional CFD model was generated for the mono-span venlo-type greenhouse, and a mesh sensitivity analysis was conducted to determine the mesh independence of the solution. Similar two-dimensional flow patterns were observed in the obtained CFD results as the experimental results reported by Lamrani et al [2]. The CFD model was then modified and used to explore the effect of roof pitch angle and roof asymmetry at floor level on the development of the flow and temperature patterns inside the cavity for various Rayleigh numbers. Results are presented in the form of vector and contour plots. It was found that considerable temperature and velocity gradients were observed in the centre of the greenhouse for each case in the first 40mm above the ground, as well as in the last 24mm close to the roof. Results also indicated that the Rayleigh number did not have a significant impact on the flow and temperature patterns inside the greenhouse, although roof angle and asymmetry did. The current results demonstrate the importance of CFD as a design tool in the case of greenhouse design.


Author(s):  
Nazia Binte Munir ◽  
Kyoungsoo Lee ◽  
Ziaul Huque ◽  
Raghava R. Kommalapati

The main purpose of the paper is to use Computational Fluid Dynamics (CFD) in 3-D analysis of aerodynamic forces of a Horizontal Axis Wind Turbine (HAWT) blade and compare the 3-D results with the 2-D experimental results. The National Renewable Energy Laboratory (NREL) Phase VI wind blade profile is used as a model for the analysis. The results are compared with the experimental data obtained by NREL at NASA Ames Research Center for the NREL Phase VI wind turbine blade. The aerodynamic forces are evaluated using 3-D Computational Fluid Dynamics (CFD) simulation. The commercial ANSYS CFX and parameterized 3-D CAD model of NREL Phase VI are used for the analysis. The Shear Stress Transport (SST) Gamma-Theta turbulence model and 0-degree yaw angle condition are adopted for CFD analysis. For the case study seven varying wind speeds (5 m/s, 7 m/s, 10 m/s, 13 m/s, 15 m/s, 20 m/s, 25 m/s) with constant blade rotational speed (72 rpm) are considered. To evaluate the 3-D aerodynamic effect sectional pressure coefficient (Cp) and integrated forces about primary axis such as normal, tangential, thrust and torque are evaluated for each of the seven wind speed cases and compared with the NREL experimental values. The numerical difference of values on wind blade surface between this study and 3-D results of NREL wind tunnel test are found negligible. The paper represents an important comparison between the 3-D lift & drag coefficient with the NREL 2-D experimental data. The results shows that though the current study is in good agreement with NREL 3-D experimental values there is large deviation between the NREL 2-D experimental data and current 3-D study which suggests that in case of 3-D analysis of aerodynamic force of blade surface it is better to use NREL 3-D values instead of 2-D experimental values.


Author(s):  
João Lameu da Silva Júnior

The chapter aims to introduce the computational fluid dynamics (CFD). A review was provided, outlining its development and applications on chemical engineering and microfluidics. The fundamental points of the CFD, listing the advantages and precautions of this numerical technique were provided. The description of CFD methodology including the three essential stages (pre-processing, solving, and post-processing) was made. The fundamental transport equations—total mass (continuity), momentum, energy, and species mass balances—and the usual boundary conditions used in CFD were explained. The main approaches used in multicomponent single-phase flows, single-phase flow in porous media, and multiphase flows in microscale were detailed, as well as the numerical mesh types and its quality parameters. A brief introduction of finite volume method (FVM) used by most of the available CFD codes was also performed, describing the main numerical solution features. Finally, the conclusions and future prospects of CFD applications are exposed.


2018 ◽  
Vol 18 (5) ◽  
pp. 1518-1530 ◽  
Author(s):  
Jie Zhang ◽  
Tien Yee

Abstract Flow near pump intakes is three-dimensional in nature, and is affected by many factors such as the geometry of the intake bay, uniformity of approach flow, critical submergence, placements and operation combinations of pumps and so on. In the last three decades, advancement of numerical techniques coupled with the increase in computational resources made it possible to conduct computational fluid dynamics (CFD) simulations on pump intakes. This article reviews different aspects involved in CFD modeling of pump station intakes, outlines the challenges faced by current CFD modelers, and provides an attempt to forecast future direction of CFD modeling of pump intakes.


2005 ◽  
Author(s):  
Jonas Johansson ◽  
Ilja Belov ◽  
Peter Leisner

An experimental procedure for investigating the effect of power distribution on the cooling of a double-sided PCB is implemented. A number of computational fluid dynamics (CFD) models are validated by laboratory experiments performed in 19.5°C temperature environment. Case temperatures of surface-mounted components fully populating the PCB sides are measured and monitored in simulations. Different combinations of power distribution with other cooling methods, such as a heatsink tooled on a sealed or open enclosure, at natural or forced convection, are studied. Thermally efficient uniform and non-uniform power configurations are determined on a double sided PCB. It is concluded that managing power distribution on a double-sided PCB can be considered as a measure to improve the thermal performance of electronic modules.


2017 ◽  
Vol 13 (2) ◽  
pp. 149-155
Author(s):  
Soňa Medvecká ◽  
Oľga Ivánková ◽  
Marek Macák

Abstract Analysis of wind flow acting upon high-rise buildings is a very common topic. This paper deals with experiment in the Boundary Layer Wind Tunnel (BWLT) in Bratislava and comparison with the computational fluid dynamics (CFD) simulation and values given in the Eurocode. The analyzed object was the model of building with circular cross section (cylinder). External wind pressure coefficients were compared in three height levels of model.


Author(s):  
Sunita Kruger ◽  
Leon Pretorius

This paper presents a numerical investigation into the indoor climate of a four span naturally ventilated, four span greenhouse subject to a time-varying wind direction. The effect of transient wind conditions on the temperature and velocity distribution inside the greenhouse is numerically determined using Computational Fluid Dynamics (CFD). The research in this paper is an extension of work previously conducted on two-dimensional models of greenhouses. Current work concentrates on the three-dimensional effect of external winds. Results indicate that for a wind direction of 22.5 degrees, the microclimate at plant level varies throughout the length of the greenhouse. It was also found from transient simulations that even a slight change in wind direction have a pronounced effect on the indoor climate at plant level.


Fluids ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 141 ◽  
Author(s):  
Manfredo Guilizzoni ◽  
Maurizio Santini ◽  
Stephanie Fest-Santini

Drop impacts (onto dry or wet surfaces or into deep pools) are important in a wide range of applications, and, consequently, many studies, both experimental and numerical, are available in the literature. However, such works are focused either on statistical analyses of drop populations or on single drops. The literature is heavily lacking in information about the mutual interactions between a few drops during the impact. This work describes a computational fluid dynamics (CFD) study on the impact of two, three, and four synchronized drops into a deep pool. The two-phase finite-volume solver interFoam of the open source CFD package OpenFOAM® was used. After validation with respect to high speed videos, to confirm the performance of the solver in this field, impact conditions and aspects that would have been difficult to obtain and to study in experiments were investigated: namely, the energy conversion during the crater evolution, the effect of varying drop interspace and surface tension, and multiple drop impacts. The results show the very significant effect of these aspects. This implies that an extension of the results of single-drop, distilled-water laboratory experiments to real applications may not be reliable.


2001 ◽  
Vol 3 (2) ◽  
pp. 59-70 ◽  
Author(s):  
N. G. Wright ◽  
D. M. Hargreaves

UV disinfection is now widely used for the treatment of water for consumption and wastewater in many countries. It offers advantages over other techniques in specific circumstances. Analysis of these systems has been carried out using a three-dimensional Computational Fluid Dynamics (CFD) procedure. This allows for efficient testing of prototypes. Sensitivity tests are shown for grid size, discretisation and turbulence model. Four different configurations of the apparatus are evaluated in terms of maximum dosage, flow patterns, particle tracks and transient dosage. This leads to conclusions about the most efficient design and shows that significant improvements can be achieved with minor changes to the design. Further conclusions are drawn about the CFD procedure itself. This work opens up the possibility of an internet-based design tool for small- and medium-sized enterprises.


Sign in / Sign up

Export Citation Format

Share Document