scholarly journals Removal of dye by using activated charcoal prepared by kitchen waste

2021 ◽  
Vol 9 (2) ◽  
pp. 123-126
Author(s):  
Shravani Sunil Sontakke ◽  
Anushka Shailesh Rupwate ◽  
Mohini Baile ◽  
Ashish Jain

The given research study explains about the removal of methyl red dye from aqueous solution. Using activated carbon prepared from kitchen waste. Garlic husk which was used in this work is cost effective and easily available kitchen waste for the production of activated carbon. HCl solution was used as activating agent. Various characterization procedures such as FT-IR, XRD, moisture content, ash value, volatile matter content, pH, iodine value of prepared activated carbon was studied. The adsorption property of activated carbon using different measurement studies like contact time study, effect of concentration, effect of dose of adsorbent was also studied.

BioResources ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. 8303-8322
Author(s):  
Qanytah ◽  
Khaswar Syamsu ◽  
Farah Fahma ◽  
dan Gustan Pari

Bamboo-based activated carbon was made using the activating agents KOH and KMnO4 at high temperature. This study examined the ability of unmilled and ball-milled bamboo activated using KOH or KMnO4 to fulfil the activated carbon standard parameters. Chemical activation was done using KOH and KMnO4 at 2.5% and 5% concentration, heated at 800 °C, and steamed for 1 hour. Sample size was reduced to 500 nm using high energy ball-milling at 500 rpm for 80, 150, or 180 min. Analysis included the yield, water content, ash content, volatile matter content, burn-off weight percentage, morphology analysis, functional groups (Fourier transform infrared spectroscopy, FTIR), crystallinity analysis (X-ray diffraction, XRD), and Brunauer, Emmett, and Teller (BET) analysis. Ball-milling treatment for 150 min produced activated carbon of 449 nm in size and a particle distribution index (PDI) score of 0.66. Ball milled activated carbon from the experiment had a pore radius ranging from 1.18 to 2.49 nm. The activated carbon that met the criteria of ANSI/AWWA B604-12 (2012) standard for moisture content, iodine number, and JIS K 1474 (1967) standard for methylene blue adsorption level and surface area were milled activated carbon with activator KMnO4 2.5%.


Author(s):  
Muhammad Saleem

Activated carbon from Acacia asak (Fabaceae) tree branches was prepared utilizing three-steps- process and H3P04, ZnCl2, H2S04, K2C03, Na0H and K0H as chemical activating agents. In addition to the elemental analysis of precursor materials, produced activated carbon (ATB-AC) was also analyzed for moisture content, ash content, pH value, bulk density, volatile matter, hardness, specific surface area (SBET), iodine number and pore volume. Results revealed that the quality of ATB-AC is well comparable to the available commercial activated carbon (CAC). The SBET was found to be in the order of ATB-AC1> ATB- AC2> ATB-AC4> ATB-AC6> ATB-AC3> ATB-AC5. All the produced ATB-AC demonstrated good MB (methylene blue) removal efficiency, whereas ATB-AC1 and ATB-AC2 (produced from H3P04, and ZnCl2) showed higher efficiency. It is concluded that the chemical activating agent has significant effect on produced AC keeping all other production parameters constant. Among the six studied chemicals, H3P04 and ZnCl2 produced AC exhibited high SBET surface area and MB uptake capacity.  


2021 ◽  
Vol 25 (9) ◽  
pp. 1707-1713
Author(s):  
O.O.E. Onawumi ◽  
A.A. Sangoremi ◽  
O.S. Bello

This study was carried out to prepare groundnut shell (GS) and eggshell (ES) into activated carbon (AC) and characterize the AC using Association of Official Analytical Chemists (AOAC) and American Standard for Testing and Materials (ASTM) methods. The AC produced was characterized for: pH, moisture content, volatile matter, ash content, fixed carbon, bulk density and surface area. Surface functional groups and surface morphology were also determined using Fourier Transformed Infrared (FT-IR) and Scanning Electron Microscope (SEM) respectively. The ranges of the following results were achieved for the biomasses: Groundnut shell Activated Carbon (GSAC) and Eggshell Activated Carbon (ESAC) respectively: pH (6.80±0.101−7.80±0.011); moisture content (14.10±0.101−12.90±.110%); volatile matter (9.20±0.112−9.90±0.012%); ash content (8.98±0.111−5.80±0.111%); fixed carbon (67.70±0.010−71.40±110%); bulk density (370.00±0.000−380.00−0.000 g/L); surface area (880.00±0.100−800.00±0.000 m2/g). The agro-wastes have high carbon contents and low inorganic which make them viable adsorbents. FT-IR analysis revealed the presence of oxygen surface complexes such as carbonyls and OH groups on the surface of the ACs in addition to good pore structures from SEM studies revealed that the agro-wastes could be good precursors for ACs production. The overall results showed that the AC produced from the agro-wastes can be optimally used as good and effective adsorbents, thereby ensuring cheaper, readily available and affordable ACs for the treatment of effluent, waste water and used oils.


2020 ◽  
Vol 14 (1) ◽  
pp. 94
Author(s):  
Lisna Efiyanti ◽  
Suci Aprianty Wati ◽  
Mamay Maslahat

Penggunaan karbon aktif di Indonesia semakin meluas sejalan dengan meningkatnya kebutuhan tehadap karbon aktif tersebut, sehingga perlu terus diupayakan pencarian bahan baku dan metode pembuatan karbon aktif untuk menghasilkan karbon aktif yang berkualitas. Salah satu bahan baku yang dapat digunakan untuk menghasilkan karbon aktif adalah cangkang buah karet karena keberadaannya tidak termanfaatkan dengan baik. Pada penelitian ini dilakukan pembuatan karbon aktif dari cangkang buah karet masing-masing dengan metode aktivasi steam pada suhu 650°C, aktivasi dengan kalium hidroksida 10% dan aktivasi dengan asam fosfat 10%. Karbon aktif yang terbentuk kemudian dianalisa menggunakan metode SNI 06-3730-1995 dengan parameter kadar air, kadar abu, kadar zat terbang, kadar karbon terikat, daya jerap iod, daya jerap biru metilen dan daya jerap benzena. Gugus fungsi, kristalinitas dan morfologi karbon aktif dianalisa masing-masing menggunakan FTIR, XRD dan SEM. Hasil penelitian menunjukkan bahwa nilai kadar air, kadar abu, kadar zat terbang, kadar karbon terikat, daya jerap iod, daya jerap biru metilen dan daya jerap benzena masing-masing sebesar 1,83-3,74%; 2,86-8,14; 7,36-13,55; 82,8-89,78%; 355,21-569,39 mg/g; 10,34-17,61 mg/g; 8,09-19,26%. Hasil FTIR menunjukkan bahwa gugus fungsi yang terdeteksi pada karbon aktif adalah gugus OH, CH alifatik, CH aromatik, C=O, C-C, C=C dan C-O, sedangkan kristalinitas karbon aktif berkisar antara 11,34-30,78% dengan ukuran pori sebesar 5-9 μm. Karbon aktif dengan aktivator KOH dapat menjerap senyawa iod dan metilen biru lebih baik sedangkan karbon aktif aktivasi steam memiliki daya jerap terbaik pada adsorpsi senyawa benzena. Manufacture and Analysis of Activated Carbon from Rubber Fruit Shell with Chemical and Physical ProcessingAbstract The utilization of activated carbon in Indonesia is increased, which is in line with the increase of activated carbon needs, therefore it is necessary to search the raw materials and methods continuously for good quality activated carbon. One of the raw materials that can be used to produce activated carbon is a rubber fruit shell because it is not properly utilized. In this research, activated carbon was made from rubber fruit shells by the steam activation method at a temperature of 650°C, 10% potassium hydroxide, and 10% phosphoric acid activation. The activated carbon was then analyzed using SNI 06-3730-1995 methods with parameters of water content, ash content, volatile matter content, fixed carbon content, iod adsorption, methylene blue adsorption, and benzene adsorption. The functional groups, crystallinity, and morphology of activated carbon also analyzed using FTIR, XRD, and SEM respectively. The results shows that the water content, ash content, volatile matter content, fixed carbon content, iod adsorption, methylene blue adsorption, and benzene adsorption are 1,83-3,74%; 2,86-8,14; 7,36-13,55; 82,8-89,78%; 355,21-569,39 mg/g; 10,34-17,61 mg/g; 8,09-19,26%, respectively. The FTIR results from activated carbon are contain of several functional groups, like OH; CH aliphatic, CH aromatic, C=O; C-C; C=C and C-O, meanwhile the degree of crystallinity from activated carbon formed are ranged 11,34-30,78% with 5-9 μm of pore size. The activated carbon with KOH activator has good adsorption in iod and methylene blue compound meanwhile activated carbon from steam activation can be a good adsorbent on the benzene compound.


Author(s):  
Chittatosh Bhattacharya

The pulverizer plays a pivotal role in coal based thermal power generation. The improper coal fineness or drying reflects a quality-wise deterioration. This results in flame instability, unburnt combustible loss, and a propensity to slagging or clinker formation. Simultaneously, an improper air-coal ratio may result in either the coal pipe choke or the flame impingement, an unbalanced heat release, an excessive FEGT, overheating of the tube metal, etc, resulting on the reduced output and excessive pulverizer rejects. In general, the base capacity of the pulverizer is a function of coal and air quality, conditions of grinding elements, classifier and other internals. The capacity mapping is a process of comparison of standard inputs with actual fired inputs to assess the available standard output capacity of the pulverizer. In fact, this will provide a standard guideline over operational adjustment and maintenance requirement of the pulverizer. The base capacity is a function of grindability; fineness requirement may vary depending upon the volatile matter content of the coal and the input coal size. The quantity and inlet temperature of primary air limits the drying capacity. The base airflow requirement will change depending upon the quality of raw coal and output requirement. It should be sufficient to dry pulverized coal. Drying capacity is also limited by utmost P.A. fan power to supply air. The P.A. temperature is limited by APH inlet flue gas temperature — an increase of this will result in efficiency loss of the boiler. Besides, the higher P.A. inlet temperature can be attained through economizer gas by-pass, the SCAPH, partial flue gas recirculation. The primary air/coal ratio, a variable quantity within the pulverizer operating range, increases with decrease in grindability or pulverizer output and decreases with decrease in volatile matter. Again, the flammability of mixture has to be monitored on explosion limit. Through calibration, the P.A. flow and efficiency of conveyance can be verified. The velocities of coal/air mixture to prevent fallout or to avoid erosion in the coal carrier pipe are dependent on the pulverized coal particle size distribution. Metal loss of grinding elements inversely depends on the YGP index of coal. Besides, variations of dynamic load on grinding elements, wearing of pulverizer internal components affect the available pulverizing capacity and percentage rejects. Therefore, the capacity mapping is necessary to ensure the available pulverizer capacity to avoid overcapacity or under capacity running of pulverizing system, optimizing auxiliary power consumption, This will provide a guideline on the distribution of raw coal feeding in different pulverizers of a boiler to maximize operating system efficiency and control resulting a more cost effective heat rate.


Sign in / Sign up

Export Citation Format

Share Document