scholarly journals Effect of Chemical Activating Agents on Surface Area and Methylene Blue Uptake Capacity of Activated Carbons

Author(s):  
Muhammad Saleem

Activated carbon from Acacia asak (Fabaceae) tree branches was prepared utilizing three-steps- process and H3P04, ZnCl2, H2S04, K2C03, Na0H and K0H as chemical activating agents. In addition to the elemental analysis of precursor materials, produced activated carbon (ATB-AC) was also analyzed for moisture content, ash content, pH value, bulk density, volatile matter, hardness, specific surface area (SBET), iodine number and pore volume. Results revealed that the quality of ATB-AC is well comparable to the available commercial activated carbon (CAC). The SBET was found to be in the order of ATB-AC1> ATB- AC2> ATB-AC4> ATB-AC6> ATB-AC3> ATB-AC5. All the produced ATB-AC demonstrated good MB (methylene blue) removal efficiency, whereas ATB-AC1 and ATB-AC2 (produced from H3P04, and ZnCl2) showed higher efficiency. It is concluded that the chemical activating agent has significant effect on produced AC keeping all other production parameters constant. Among the six studied chemicals, H3P04 and ZnCl2 produced AC exhibited high SBET surface area and MB uptake capacity.  

Surface ◽  
2020 ◽  
Vol 12(27) ◽  
pp. 137-145
Author(s):  
M. V. Borysenko ◽  
◽  
Ya. M. Chubenko ◽  
I. I. Voitko ◽  
T. S. Chorna ◽  
...  

In this work, we investigated granular and powder activated carbons (AC) – initial and waste with adsorbed impurities after purification of technical glycerin and subsequent washing with water. The aim of this work was to quantify the adsorbed impurities in the spent AC using thermal analysis (TA) and to work out the conditions for thermal regeneration of AC. TA of AC samples was carried out in an atmosphere of helium and air; the specific surface area of AC was measured by the method of low-temperature desorption of argon (SAr). It was established by the TA method that water is released in the temperature range of 20 – 170 °C, and glycerin – 170 – 400 °C. Spent AC contains up to 22.8 wt. % H2O and up to 44.6 wt. % C3H5(OH)3. Based on these data, it was proposed to regenerate spent coal by heating at 400 °C in air. In the case of a granular AC sample, the regeneration proceeds completely, while for a powder AC sample, the specific surface area with respect to argon is restored only by 22 %, from the initial 2170 m2/g. The adsorption isotherms of methylene blue (MB) of the initial samples are located higher than for the spent ones, since in the spent ones part of the surface is occupied by adsorbed glycerin. The SMB values calculated from the adsorption of methylene blue in the spent AC samples are strongly overestimated in comparison with SAr. Probably, MB displaces glycerin from the surface or interacts with it to form complexes.


2013 ◽  
Vol 16 (1) ◽  
pp. 22-31
Author(s):  
Phung Thi Kim Le ◽  
Kien Anh Le

Agricultural wastes are considered to be a very important feedstock for activated carbon production as they are renewable sources and low cost materials. This study present the optimize conditions for preparation of durian peel activated carbon (DPAC) for removal of methylene blue (MB) from synthetic effluents. The effects of carbonization temperature (from 673K to 923K) and impregnation ratio (from 0.2 to 1.0) with potassium hydroxide KOH on the yield, surface area and the dye adsorbed capacity of the activated carbons were investigated. The dye removal capacity was evaluated with methylene blue. In comparison with the commercial grade carbons, the activated carbons from durian peel showed considerably higher surface area especially in the suitable temperate and impregnation ratio of activated carbon production. Methylene blue removal capacity appeared to be comparable to commercial products; it shows the potential of durian peel as a biomass source to produce adsorbents for waste water treatment and other application. Optimize condition for preparation of DPAC determined by using response surface methodology was at temperature 760 K and IR 1.0 which resulted the yield (51%), surface area (786 m2/g), and MB removal (172 mg/g).


2017 ◽  
Vol 36 (3) ◽  
pp. 44-53
Author(s):  
G. D. Akpen ◽  
M. I. Aho ◽  
N. Baba

Activated carbon was prepared from the pods of Albizia saman for the purpose of converting the waste to wealth. The pods were thoroughly washed with water to remove any dirt, air- dried and cut into sizes of 2-4 cm. The prepared pods were then carbonised in a muffle furnace at temperatures of 4000C, 5000C, 6000C ,7000C and 8000C for 30 minutes. The same procedure was repeated for 60, 90, 120 and 150 minutes respectively. Activation was done using impregnationratios of 1:12, 1:6, 1:4, 1:3, and 1:2 respectively of ZnCl2 to carbonised Albizia saman pods by weight. The activated carbon was then dried in an oven at 1050C before crushing for sieve analysis. The following properties of the produced Albizia saman pod activated carbon (ASPAC) were determined: bulk density, carbon yield, surface area and ash, volatile matter and moisture contents. The highest surface area of 1479.29 m2/g was obtained at the optimum impregnation ratio, carbonization time and temperature of 1:6, 60 minutes and 5000C respectively. It was recommended that activated carbon should be prepared from Albizia saman pod with high potential for adsorption of pollutants given the high surface area obtained.Keywords: Albizia saman pod, activated carbon, carbonization, temperature, surface area


2016 ◽  
Vol 35 (6) ◽  
pp. 535-541 ◽  
Author(s):  
Hongying Xia ◽  
Jian Wu ◽  
Chandrasekar Srinivasakannan ◽  
Jinhui Peng ◽  
Libo Zhang

AbstractThe present work attempts to convert bamboo into a high surface area activated carbon via microwave heating. Different chemical activating agents such as KOH, NaOH, K2CO3 and Na2CO3 were utilized to identify a most suitable activating agent. Among the activating agents tested KOH was found to generate carbon with the highest porosity and surface area. The effect of KOH/C ratio on the porous nature of the activated carbon has been assessed. An optimal KOH/C ratio of 4 was identified, beyond which the surface area as well as the pore volume were found to decrease. At the optimized KOH/C ratio the surface area and the pore volume were estimated to be 3,441 m2/g and 2.093 ml/g, respectively, with the significant proportion of which being microporous (62.3%). Activated carbon prepared under the optimum conditions was further characterized using Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM). Activated carbons with so high surface area and pore volume are very rarely reported, which could be owed to the nature of the precursor and the optimal conditions of mixture ratio adopted in the present work.


2019 ◽  
Vol 24 (6) ◽  
pp. 45
Author(s):  
Mayada M . Ali1 ◽  
Firas E. Fatthee2 ◽  
Ahmed AbdulkarimThunoon3

In the present study, activated carbons were prepared from Punicagranatum .sp, using potassium hydroxide as activating agent. Punicagranatum .sp activated carbon(PGAC) was characterization using methylene blue number, iodine number and some physical properties such as humidity, ash content and density. The perfect measurement for this study was the proportion of (1:2.5)(wood : KOH) to give 560mg for iodine number and 67mg for methylene blue number which are good result.   http://dx.doi.org/10.25130/tjps.24.2019.107


2011 ◽  
Vol 704-705 ◽  
pp. 517-522 ◽  
Author(s):  
Xiao Juan Jin ◽  
Zhi Ming Yu ◽  
Gao Jiang Yan ◽  
Wu Yu

Activated carbons were prepared through chemical activation of lignin from straw pulping precursor using potassium carbonate as the chemical agent. Effects of activated temperature, K2CO3/lignin ratio and the activated time on the yield, Iodine number of activated carbon were investigated. Experimental results indicated that the optimum conditions were as follow: activated temperature 800°C, K3CO3(40% concentration) /lignin ratio 5: l, activated time 50min. These conditions allowed us to obtain a BET surface area of 1104 m2/g, including the external or non-microporous surface of 417 m2/g,Amount of methylene blue adsorption, Iodine number and the yield of activated carbon prepared under optimum conditions were 10.6mL/0.lg,1310 mg/g and 19.75%, respectively.


Author(s):  
Batkhishig Damdin ◽  
Purevsuren Barnasan ◽  
Chung-Jun Lin ◽  
Batbileg Sanjaa ◽  
Ariunaa Alyeksandr

Initial coal was purified in heavy liquid with a density 1.3 cm3 of ZnCl2 solution and purified coal was carbonized and the initial coal samples of each deposits were purified by pyrolysis. Thus, the yield of pyrolysis hard residue in the enriched sample was slightly higher than in the hard residue of initial coal. Therefore, pyrolysis hard residue of purified coal (carbonized sample) was activated at 800°C for 2 hours by preheated water steam. Activated carbons (ACs) and non-activated and non-carbonized coal from Baganuur, Ereen and Nariin Sukhait deposits were technically analyzed and their iodine number, BET surface area, pore volume and adsorption of methylene blue (MB) were determined. When these results were compared, these indicators increased 5-17 times in the Baganuur activated carbon (BN-AC), Ereen activated carbon (E-AC) and Nariin Sukhait activated carbon (NS-AC) as compared to inactivated coal.


2018 ◽  
Vol 107 ◽  
pp. 1792-1799 ◽  
Author(s):  
Asma Nasrullah ◽  
A.H. Bhat ◽  
Abdul Naeem ◽  
Mohamed Hasnain Isa ◽  
Mohammed Danish

Author(s):  
Ali H. Jawad ◽  
Ahmed Saud Abdulhameed ◽  
Noor Nazihah Bahrudin ◽  
Nurul Nadiah Mohd Firdaus Hum ◽  
S. N. Surip ◽  
...  

Abstract In this work, sugarcane bagasse waste (SBW) was used as a lignocellulosic precursor to develop a high surface area activated carbon (AC) by thermal treatment of the SBW impregnated with KOH. This sugarcane bagasse waste activated carbon (SBWAC) was characterized by means of crystallinity, porosity, surface morphology and functional groups availability. The SBWAC exhibited Type I isotherm which corresponds to microporosity with high specific surface area of 709.3 m2/g and 6.6 nm of mean pore diameter. Further application of SBWAC as an adsorbent for methylene blue (MB) dye removal demonstrated that the adsorption process closely followed the pseudo-second order kinetic and Freundlich isotherm models. On the other hand, thermodynamic study revealed the endothermic nature and spontaneity of MB dye adsorption on SBWAC with high acquired adsorption capacity (136.5 mg/g). The MB dye adsorption onto SBWAC possibly involved electrostatic interaction, H-bonding and π-π interaction. This work demonstrates SBW as a potential lignocellulosic precursor to produce high surface area AC that can potentially remove more cationic dyes from the aqueous environment.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2237
Author(s):  
Sara Stelitano ◽  
Giuseppe Conte ◽  
Alfonso Policicchio ◽  
Alfredo Aloise ◽  
Giovanni Desiderio ◽  
...  

Pinecones, a common biomass waste, has an interesting composition in terms of cellulose and lignine content that makes them excellent precursors in various activated carbon production processes. The synthesized, nanostructured, activated carbon materials show textural properties, a high specific surface area, and a large volume of micropores, which are all features that make them suitable for various applications ranging from the purification of water to energy storage. Amongst them, a very interesting application is hydrogen storage. For this purpose, activated carbon from pinecones were prepared using chemical activation with different KOH/precursor ratios, and their hydrogen adsorption capacity was evaluated at liquid nitrogen temperatures (77 K) at pressures of up to 80 bar using a Sievert’s type volumetric apparatus. Regarding the comprehensive characterization of the samples’ textural properties, the measurement of the surface area was carried out using the Brunauer–Emmett–Teller method, the chemical composition was investigated using wavelength-dispersive spectrometry, and the topography and long-range order was estimated using scanning electron microscopy and X-ray diffraction, respectively. The hydrogen adsorption properties of the activated carbon samples were measured and then fitted using the Langmuir/ Töth isotherm model to estimate the adsorption capacity at higher pressures. The results showed that chemical activation induced the formation of an optimal pore size distribution for hydrogen adsorption centered at about 0.5 nm and the proportion of micropore volume was higher than 50%, which resulted in an adsorption capacity of 5.5 wt% at 77 K and 80 bar; this was an increase of as much as 150% relative to the one predicted by the Chahine rule.


Sign in / Sign up

Export Citation Format

Share Document