scholarly journals Oxidative stress and mitochondrial dysfunction of retinal ganglion cells injury exposures in long-term blue light

2020 ◽  
Vol 13 (12) ◽  
pp. 1854-1863
Author(s):  
Ke-Xin Guo ◽  
Wei Wang ◽  
Pei Zhang ◽  
Ying Li ◽  
Zi-Yuan Liu ◽  
...  

AIM: To investigate the phototoxic effect of long-term excessive narrow-band blue light in staurosporine-induced differentiated retinal ganglion cells-5 (SSRGC-5). METHODS: SSRGC-5 cells were divided into two groups, blue light group (BL group) and control group. Cell viability was assessed by using CCK-8 assay. Metabolic profile analysis was performed by using Seahorse extracellular flux analyzer. Mitochondria ultrastructure were studied via transmission electron microscope (TEM). Mitochondria contents and oxidative stress was evaluated by flow cytometry. Western blotting was performed to monitor the changes in mitogen-activated protein kinases (MAPK) pathway and PI3K/AKT pathway. RESULTS: Blue light caused morphological changes of SSRGC-5 cells. The cell viability was significantly decreased from 3h in BL group. Intercellular ROS and mitochondrial superoxide levels were increased following blue light exposure. Metabolic profiling identified blue light induced SSRGC-5 cells to have severely compromised mitochondrial function. This was accompanied by impaired mitochondrial ultrastructure and remodeling, increased expression of the mitochondrial related proteins, and increased glycolysis as compensation. Moreover, the results showed that blue light induced higher expression of p-p38, p38, p-JNK, p-ERK, p-c-Jun, c-Jun, and p-AKT. CONCLUSION: These findings indicate that excessive narrow-band blue light induces oxidative stress and mitochondrial metabolic remodeling dysregulate in SSRGC-5 cells. Activated MAPK and AKT signaling pathways are involved in this process.

2021 ◽  
Vol 14 (1) ◽  
pp. 50
Author(s):  
Alicia Arranz-Romera ◽  
Maria Hernandez ◽  
Patricia Checa-Casalengua ◽  
Alfredo Garcia-Layana ◽  
Irene T. Molina-Martinez ◽  
...  

We assessed the sustained delivery effect of poly (lactic-co-glycolic) acid (PLGA)/vitamin E (VitE) microspheres (MSs) loaded with glial cell-derived neurotrophic factor (GDNF) alone (GDNF-MSs) or combined with brain-derived neurotrophic factor (BDNF; GDNF/BDNF-MSs) on migration of the human adult retinal pigment epithelial cell-line-19 (ARPE-19) cells, primate choroidal endothelial (RF/6A) cells, and the survival of isolated mouse retinal ganglion cells (RGCs). The morphology of the MSs, particle size, and encapsulation efficiencies of the active substances were evaluated. In vitro release, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell viability, terminal deoxynucleotidyl transferase (TdT) deoxyuridine dUTP nick-end labelling (TUNEL) apoptosis, functional wound healing migration (ARPE-19; migration), and (RF/6A; angiogenesis) assays were conducted. The safety of MS intravitreal injection was assessed using hematoxylin and eosin, neuronal nuclei (NeuN) immunolabeling, and TUNEL assays, and RGC in vitro survival was analyzed. MSs delivered GDNF and co-delivered GDNF/BDNF in a sustained manner over 77 days. The BDNF/GDNF combination increased RPE cell migration, whereas no effect was observed on RF/6A. MSs did not alter cell viability, apoptosis was absent in vitro, and RGCs survived in vitro for seven weeks. In mice, retinal toxicity and apoptosis was absent in histologic sections. This delivery strategy could be useful as a potential co-therapy in retinal degenerations and glaucoma, in line with future personalized long-term intravitreal treatment as different amounts (doses) of microparticles can be administered according to patients’ needs.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Yuhong Fu ◽  
Ying Wang ◽  
Xinyuan Gao ◽  
Huiyao Li ◽  
Yue Yuan

Background. Diabetic retinopathy (DR) is a severe complication of diabetes mellitus. DR is considered as a neurovascular disease. Retinal ganglion cell (RGC) loss plays an important role in the vision function disorder of diabetic patients. Histone deacetylase3 (HDAC3) is closely related to injury repair and nerve regeneration. The correlation between HDAC3 and retinal ganglion cells in diabetic retinopathy is still unclear yet. Methods. To investigate the chronological sequence of the abnormalities of retinal ganglion cells in diabetic retinopathy, we choose 15 male db/db mice (aged 8 weeks, 12 weeks, 16 weeks, 18 weeks, and 25 weeks; each group had 3 mice) as diabetic groups and 3 male db/m mice (aged 8 weeks) as the control group. In this study, we examined the morphological and immunohistochemical changes of HDAC3, Caspase3, and LC3B in a sequential manner by characterizing the process of retinal ganglion cell variation. Results. Blood glucose levels and body weights of db/db mice were significantly higher than that of the control group, P<0.01. Compared with the control group, the number of retinal ganglion cells decreased with the duration of disease increasing. HDAC3 expression gradually increased in RGCs of db/db mice. Caspase3 expression gradually accelerated in RGCs of db/db mice. LC3B expression dynamically changed in RGCs of db/db mice. HDAC3 was positively correlated with Caspase3 expression (r=0.7424), P<0.01. HDAC3 was positively correlated with LC3B expression (r=0.7336), P<0.01. Discussion. We clarified the dynamic expression changes of HDAC3, Caspase3, and LC3B in retinal ganglion cells of db/db mice. Our results suggest the HDAC3 expression has a positive correlation with apoptosis and autophagy.


2013 ◽  
Vol 38 (2) ◽  
pp. 129-139 ◽  
Author(s):  
Kyung-A Kim ◽  
Kwang Hyun Cha ◽  
Soon-Jung Choi ◽  
Cheol-Ho Pan ◽  
Sang Hoon Jung

2006 ◽  
Vol 324 (2) ◽  
pp. 189-202 ◽  
Author(s):  
Y. Dun ◽  
B. Mysona ◽  
T. Van Ells ◽  
L. Amarnath ◽  
M. Shamsul Ola ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document