scholarly journals Computational analysis of homogeneous nucleation and droplet growth applied to natural gas separators

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Natalia Prieto-Jiménez ◽  
José Fuentes ◽  
Germán González-Silva

A natural gas droplet is generated at certain thermodynamic conditions through three stages: supersaturation, where the gas has more molecules than it should have in equilibrium, forming “embryos” of liquid phase; nucleation, where embryos form groups of different shapes and sizes of nanometer order; and the droplet growth, where the number of molecules increases until equilibrium is reached. In this paper, the homogeneous nucleation and droplet growth of natural gas applied to gravitational separators operating at high pressure conditions (7MPa) are analyzed. The results showed that at a high pressure, the initial drop size reached was 8.024 nanometers and the final diameter of the drop was 4.18 micrometers.

2019 ◽  
Vol 965 ◽  
pp. 97-105
Author(s):  
Alexandre Mendonça Teixeira ◽  
Lara de Oliveira Arinelli ◽  
José Luiz de Medeiros ◽  
Ofélia de Queiroz Fernandes Araújo

The oil and gas industry represents an important contributor to CO2 emissions as offshore platforms are power intensive for producing, processing and transporting hydrocarbons. In offshore rigs CO2 emissions mainly come from on-site gas-fired power generation for heat and electricity production. The accumulation of atmospheric CO2 is one of the main causes of the planetary greenhouse effect, thus CO2 emissions should be minimized. To achieve that, more energy efficient processes for natural gas (NG) conditioning are needed in order to minimize platform power consumption and thus lowering the associated generation of CO2. In addition, in offshore scenarios gas-hydrate obstructions are a major concern in flow assurance strategies, since thermodynamic conditions favoring hydrate formation are present, such as high pressure, low external temperature and gas contact with free water. To avoid hydrate issues, hydrate inhibition is carried out by the injection of a thermodynamic hydrate inhibitor (THI) in well-heads such that it flows along with production fluids, thus removing the thermodynamic conditions for hydrate formation and ensuring unimpeded flow. Therefore, the three-phase high-pressure separator (HPS) is fed with production fluids, where the HPS splits the feed into: (i) an upper gas phase, (ii) hydrocarbon condensate, and (iii) a bottom aqueous phase. The gas phase goes to NG conditioning for hydrocarbon dew point adjustment (HCDPA) and water dew point adjustment (WDPA) so as to make NG exportable. The hydrocarbon condensate (if present) is collected for stabilization and the bottom aqueous phase consisting of water, salts and THI is sent to a THI recovery unit (THI-RU) for THI re-concentration and reinjection. In conventional plants, WDPA and HCDPA are done by glycol absorption and Joule-Thomson expansion respectively. Moreover, the HPS gas carries some THI such as methanol that is lost in the processing. This work analyses a new process – SS-THI-Recovery – where HPS gas feeds a supersonic separator (SS) with injected water and compares it to the conventional processing. As a result, SS ejects a cold two-phase condensate with almost all water, THI and C3+ hydrocarbons, discharging exportable NG with enough HCDPA and WDPA grades, while the condensate gives aqueous THI returned to the THI-RU and LPG with high commercial value. Thus, SS-THI-Recovery not only avoids THI losses as well as exports NG and LPG. Both conventional gas plant and SS-THI-Recovery alternative coupled to THI-RU were simulated in HYSYS 8.8 for a given NG field and targeting the same product specifications. SS-THI-Recovery presented lower power consumption and thus less associated CO2 emissions, while potentially increasing the gas plant profitability, as THI losses are significantly reduced and higher flow rate of LPG with higher commercial value is produced in comparison with the conventional alternative. Hence, the higher efficiency of SS-THI-recovery makes it not only more environmentally friendly with lower CO2 emissions, but also a potential alternative for improving process economics and thus providing an economic leverage that could justify investments in carbon capture technologies, contributing to avoid CO2 emissions even more with cleaner NG and LPG production.


Metrologia ◽  
2006 ◽  
Vol 43 (1A) ◽  
pp. 07001-07001 ◽  
Author(s):  
Dietrich Dopheide
Keyword(s):  

Author(s):  
Khuram Maqsood ◽  
Abulhassan Ali ◽  
Rizwan Nasir ◽  
Aymn Abdul Rehman ◽  
Abdullah. S. Bin Mahfouz ◽  
...  

2021 ◽  
Vol 21 (2) ◽  
pp. 91-94
Author(s):  
Seno - Darmanto ◽  
Muhammad Fahrudin

CNG Cooler is a heat exchanger in CNG Plant System which has function to reduce CNG temperature. CNG (Compressed Natural Gas) is natural gas which compressed by gas compressor from normal pressure up to certain high pressure. CNG Plant is gas storage and supply facility for PLTGU when it work at peak load hours. CNG Cooler reduce temperature of CNG which out from gas compressor before saved in storage utility which purpose to avoid over heating in the next process, increase durability of the next process utility, and make gas storage utility design easy.


2021 ◽  
Author(s):  
Long Liu ◽  
Tianyang Dai ◽  
Qian Xiong ◽  
Yuehua Qian ◽  
Bo Liu

Abstract With increasingly stringent emissions limitation of greenhouse gas and atmospheric pollutants for ship, the direct injection of natural gas on the cylinder head with high-pressure injection is an effective method to make a high power output and decrease harmful gas emissions in marine natural gas dual fuel engines. However, the effects on mixing characteristics of high-pressure natural gas underexpanded jet have not been fully understood. Especially, the injection pressure is up to 30 MPa with large injection quantity and critical surrounding gas conditions for the low-speed two-stroke marine engine. Therefore, this research is focused on the flow and mixing process of the natural gas jet with high-pressure injection under the in-cylinder conditions of low-speed two-stroke marine engine. The gas jet penetration, the distribution of velocity and density, the equivalence ratio and air entrainment have been analyzed under different nozzle hole diameters by numerical simulation. The effects of surrounding gas conditions including pressure, temperature and swirl ratio on air entrainment and equivalence ratio distribution were studied in detail. From the numerical simulation, it is found that the mixing characteristics of natural gas jet can be improved under in-cylinder conditions of higher ambient temperature and swirl ratio, which is relevant to the low-speed two-stroke marine engine.


Author(s):  
Griffin Beck ◽  
Melissa Poerner ◽  
Kevin Hoopes ◽  
Sandeep Verma ◽  
Garud Sridhar ◽  
...  

Hydraulic fracturing treatments are used to produce oil and gas reserves that would otherwise not be accessible using traditional production techniques. Fracturing treatments require a significant amount of water, which has an associated environmental impact. In recent work funded by the Department of Energy (DOE), an alternative fracturing process has been investigated that uses natural gas as the primary fracturing fluid. In the investigated method, a high-pressure foam of natural gas and water is used for fracturing, a method than could reduce water usage by as much as 80% (by volume). A significant portion of the work focused on identifying and optimizing a mobile processing facility that can be used to pressurize natural gas sourced from adjacent wells or nearby gas processing plants. This paper discusses some of the evaluated processes capable of producing a high-pressure (10,000 psia) flow of natural gas from a low-pressure source (500 psia). The processes include five refrigeration cycles producing liquefied natural gas as well as a cycle that directly compresses the gas. The identified processes are compared based on their specific energy as calculated from a thermodynamic analysis. Additionally, the processes are compared based on the estimated equipment footprint and the process safety. Details of the thermodynamic analyses used to compare the cycles are provided. This paper also discusses the current state of the art of foam fracturing methods and reviews the advantages of these techniques.


Sign in / Sign up

Export Citation Format

Share Document