scholarly journals Microwave-Assisted Pyrolysis of Cashew Nut Shell

2021 ◽  
Vol 16 (2) ◽  
pp. 227-232
Author(s):  
Novriany Amaliyah ◽  
Andi Erwin Eka Putra

This research examines the characteristics of microwave assisted pyrolysis products of cashew nutshell waste (CNS). The pyrolysis process of CNS conducted with microwave heating of 400 W for 60 minutes. Pyrolysis product such as bio-gas, bio-oil and bio-char were identified using proximate and ultimate analysis, scanning electron microscope (SEM), thermogravimetric analysis (TGA/DTG), gas chromatograph-mass spectrometer (GC-MS) and Fourier Transform InfraRed (FTIR) Method. There is a significant increasing in volatile matter and fixed carbon of derived bio-char and the porous structure was observed in a range of macropore after pyrolysis. The TGA profile reveals CNS sample lost about 71.25% of mass before reached 750℃. The highest decomposition rate on the DTG profile was 0.57 mg/min and 0.56 mg/min as observed at about 261.2℃ and 340.3℃. Bio-oil yield has density of 1.036 gr/ml, viscosity of 19.5 cst after water removing, flash point of 138℃ and HHV of 21.7 MJ/kg. The GC-MS of the bio-oil shows about 53% phenol, 19% palmitic and oleic acid, 11% cyclobutene, 14% ethyl and methyl ester, and cyclopentene and cyclohexane in small amounts in accordance with FT-IR results.

2019 ◽  
Vol 6 (2) ◽  
pp. 74-80
Author(s):  
Laily Nurliana ◽  
Rustam Musta

Research on kinetics antibacterial from pyrolysis product of cashew nut shell againts Staphylococcus aureus have been carried out. Cashew nuts are prepared by separating the shell and seeds for pyrolysis. The results of S. aureus antibacterial activity test results pyrolysis pyrolysis products shell cashew nut showed inhibition is different for each variation of the concentration of 12.5%, 25%, 50%, 75% and 100% with inhibition of successive 0.87; 0.97; 1.38; 1.47 and 1.61 (cm). Based on these results it can be said that the result of the pyrolysis of cashew nut shells provide a response inhibition that were at concentrations of 12.5 and 25%. While the concentration of 50%, 75%, and 100% response inhibitory power is included in the strong category on the growth of S. aureus. Order the reaction of the antibacterial activity of S. aureus from the pyrolysis products obtained cashew nut shell 0,3 with activity rate constant of 0.38. The concentration of pyrolysis products of pyrolysis results cashew nut shell the minimum recommended for use as an antibacterial S.aureus.


2017 ◽  
Vol 846 ◽  
pp. 012026 ◽  
Author(s):  
Mashuni ◽  
Muhammad Jahiding ◽  
Waode Sitti Ilmawati ◽  
Ita Kurniasih ◽  
Wa Wati ◽  
...  

Author(s):  
Muhammad Shahbaz ◽  
Ahmed AlNouss ◽  
Prakash Parthasarathy ◽  
Ali H. Abdelaal ◽  
Hamish Mackey ◽  
...  

Abstract Prior information on the pyrolysis product behaviour of biomass components-cellulose, hemicellulose and lignin is critical in the selection of feedstock as components have a significant influence on the pyrolysis products yield. In this study, the effect of biomass components on the yield of slow pyrolysis products (char, bio-oil and syngas) is investigated using a validated ASPEN Plus® model. The model is simulated at a temperature of 450 °C, a heating rate of 10 °C/min and a solid residence time of 30 min. The results indicated that at the given conditions, lignin contributed 2.4 and 2.5 times more char yield than cellulose and hemicellulose. The hemicellulose contributed 1.33 times more syngas yield than lignin while the cellulose and hemicellulose contributed 8.67 times more bio-oil yield than lignin. Moreover, the cost involved in the production of char using lignin (110 $/ton) is significantly economical than using cellulose (285 $/ton) and hemicellulose (296 $/ton). The net CO2 emission of lignin pyrolysis is 4.14 times lower than cellulose pyrolysis and 3.94 times lower than hemicellulose pyrolysis. It can be concluded that lignin pyrolysis is more advantageous than cellulose and hemicellulose pyrolysis. In the selection of feedstock for the slow pyrolysis, the feedstock with more lignin content is preferred. Graphical abstract


2014 ◽  
Vol 554 ◽  
pp. 150-154 ◽  
Author(s):  
Faisal Mushtaq ◽  
Ramli Mat ◽  
Farid Nasir Ani

The oil palm shell was subjected to multimode microwave pyrolysis at a fixed microwave power of 300W at 2.54GHz using intimately mix and layer microwave heating methods to observe process temperature, pyrolysis product and bio-oil composition at various levels of Coconut Activated Carbon (CAC). The results indicated that the layers method achieved higher bio-oil yield with complete uniformity of process temperature at high CAC loading compared to intimate mix method. The increased CAC loading increased selectivity towards phenol in bio-oil with maximum phenol 80.23 %area and 51.77%area under GC-MS at 75wt% CAC loading using intimately mix and layer method, respectively. The layer method produced a new product 1,1-dimethyl hydrazine of 11.24–13.01 %area in bio-oils which was not found of using intimately mix method. The 1,1-dimethly hydrazine is an important source of high energy fuel. Keywords: Oil palm shell; intimately mix method; layer method; coconut activated carbon; microwave assisted pyrolysis; heating profile; bio-oil


2021 ◽  
Vol 25 (9) ◽  
pp. 1707-1713
Author(s):  
O.O.E. Onawumi ◽  
A.A. Sangoremi ◽  
O.S. Bello

This study was carried out to prepare groundnut shell (GS) and eggshell (ES) into activated carbon (AC) and characterize the AC using Association of Official Analytical Chemists (AOAC) and American Standard for Testing and Materials (ASTM) methods. The AC produced was characterized for: pH, moisture content, volatile matter, ash content, fixed carbon, bulk density and surface area. Surface functional groups and surface morphology were also determined using Fourier Transformed Infrared (FT-IR) and Scanning Electron Microscope (SEM) respectively. The ranges of the following results were achieved for the biomasses: Groundnut shell Activated Carbon (GSAC) and Eggshell Activated Carbon (ESAC) respectively: pH (6.80±0.101−7.80±0.011); moisture content (14.10±0.101−12.90±.110%); volatile matter (9.20±0.112−9.90±0.012%); ash content (8.98±0.111−5.80±0.111%); fixed carbon (67.70±0.010−71.40±110%); bulk density (370.00±0.000−380.00−0.000 g/L); surface area (880.00±0.100−800.00±0.000 m2/g). The agro-wastes have high carbon contents and low inorganic which make them viable adsorbents. FT-IR analysis revealed the presence of oxygen surface complexes such as carbonyls and OH groups on the surface of the ACs in addition to good pore structures from SEM studies revealed that the agro-wastes could be good precursors for ACs production. The overall results showed that the AC produced from the agro-wastes can be optimally used as good and effective adsorbents, thereby ensuring cheaper, readily available and affordable ACs for the treatment of effluent, waste water and used oils.


2016 ◽  
Vol 8 (1) ◽  
pp. 217-224 ◽  
Author(s):  
Renata Moreira ◽  
Rosely dos Reis Orsini ◽  
Jorge Moreira Vaz ◽  
José Carlos Penteado ◽  
Estevam V. Spinacé

2020 ◽  
Vol 7 (2) ◽  
pp. 170-176
Author(s):  
Rustam Musta ◽  
Laily Nurliana ◽  
Andraysno Andraysno

Chemical kinetics research antibacterial of aliphatic alkane fraction from the results of pyrolysis Cashew Nut Shell (CNS) (Annacardium occidentale L.) on Eschericia coli have been carried out. Cashew nuts are prepared by separating the shell and seeds for pyrolysis and purifying using a fractional distillation device. The results of E. coli anti-bacterial activity test from aliphatic alkane fractional distillation results of cashew nut shell pyrolysis products showed that the inhibitory power was different from each concentration variation of 100%, 75%, 50%, 25%, and 12.5%, with inhibitor zone: 8.02; 7.16; 5.56; 4.52 dan 4.26 mm which indicates that the inhibition is weak category for 12.5% and 25%, medium category for 50%, 75% and 100%. The clear zone that has been formed are calculated in terms of its chemical kinetics including the reaction order and the activity rate constant. The reaction order (n) antibacterial of aliphatic alkane fraction from the results of pyrolysis CNS on E. coli was 0.3145 with a constant activity rate of (k) = 1,7791. 


Sign in / Sign up

Export Citation Format

Share Document