scholarly journals An Efficient Security Model for Password Generation and Time Complexity Analysis for Cracking the Password

2020 ◽  
Vol 10 (5) ◽  
pp. 713-720
Author(s):  
Bathula Prasanna Kumar ◽  
Edara Srinivasa Reddy

Passwords tend to be one of the most popular approaches to protect operating systems and user’s data also. Most businesses rely on password protection schemes, and secure passwords are incredibly necessary to them. The proposed model typically aims to impose protection by forcing users to obey protocols to build passwords. For user protection, password has become a prevailing method in terms of exposure to scarce tools. The main problem with password is its consistency or power, i.e. how simple (or how difficult) a third person can be "assumed" to enter the tool that you use while claiming to be you. In operating systems, text-based passwords remain the primary form of authentication, following major improvements in attackers' skills in breaking passwords. The proposed Random Character Utilization with Hashing (RCUH) is used for generation of new passwords by considering user parameters. The proposed model introduces a new framework to design a password by considering nearly 10 parameters from the user and also analyze the time for cracking the generated password to provide the system strength. The proposed model aims to generate an efficient security model for password generation by considering several secret parameters from the user. To break a set of consistency passwords, analysis is also performed on time for password cracking. The tests show a close positive correlation between guessing complexity and password consistency. The proposed model is compared with the traditional password generation and cracking models. The proposed model takes much time in cracking the password that improves the systems security.

Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 772 ◽  
Author(s):  
Houshyar Honar Pajooh ◽  
Mohammad Rashid ◽  
Fakhrul Alam ◽  
Serge Demidenko

The proliferation of smart devices in the Internet of Things (IoT) networks creates significant security challenges for the communications between such devices. Blockchain is a decentralized and distributed technology that can potentially tackle the security problems within the 5G-enabled IoT networks. This paper proposes a Multi layer Blockchain Security model to protect IoT networks while simplifying the implementation. The concept of clustering is utilized in order to facilitate the multi-layer architecture. The K-unknown clusters are defined within the IoT network by applying techniques that utillize a hybrid Evolutionary Computation Algorithm while using Simulated Annealing and Genetic Algorithms. The chosen cluster heads are responsible for local authentication and authorization. Local private blockchain implementation facilitates communications between the cluster heads and relevant base stations. Such a blockchain enhances credibility assurance and security while also providing a network authentication mechanism. The open-source Hyperledger Fabric Blockchain platform is deployed for the proposed model development. Base stations adopt a global blockchain approach to communicate with each other securely. The simulation results demonstrate that the proposed clustering algorithm performs well when compared to the earlier reported approaches. The proposed lightweight blockchain model is also shown to be better suited to balance network latency and throughput as compared to a traditional global blockchain.


2022 ◽  
Vol 11 (1) ◽  
pp. 5
Author(s):  
Njabulo Sakhile Mtetwa ◽  
Paul Tarwireyi ◽  
Cecilia Nombuso Sibeko ◽  
Adnan Abu-Mahfouz ◽  
Matthew Adigun

The Internet of Things (IoT) is changing the way consumers, businesses, and governments interact with the physical and cyber worlds. More often than not, IoT devices are designed for specific functional requirements or use cases without paying too much attention to security. Consequently, attackers usually compromise IoT devices with lax security to retrieve sensitive information such as encryption keys, user passwords, and sensitive URLs. Moreover, expanding IoT use cases and the exponential growth in connected smart devices significantly widen the attack surface. Despite efforts to deal with security problems, the security of IoT devices and the privacy of the data they collect and process are still areas of concern in research. Whenever vulnerabilities are discovered, device manufacturers are expected to release patches or new firmware to fix the vulnerabilities. There is a need to prioritize firmware attacks, because they enable the most high-impact threats that go beyond what is possible with traditional attacks. In IoT, delivering and deploying new firmware securely to affected devices remains a challenge. This study aims to develop a security model that employs Blockchain and the InterPlanentary File System (IPFS) to secure firmware transmission over a low data rate, constrained Long-Range Wide Area Network (LoRaWAN). The proposed security model ensures integrity, confidentiality, availability, and authentication and focuses on resource-constrained low-powered devices. To demonstrate the utility and applicability of the proposed model, a proof of concept was implemented and evaluated using low-powered devices. The experimental results show that the proposed model is feasible for constrained and low-powered LoRaWAN devices.


Author(s):  
J V N Lakshmi

Unmanned Aerial Vehicles usage has significantly improved in all the sectors. Various industries are using drones as a platform for development with eco- nomic investment. Drastic advancement in design, flexibility, equipment and technical improvements has a great impact in creating airborne domain of IoT. Hence, drones have become a part of farming industry. Indian agriculture economy concentrates more on producing rice as this is considered as a staple food in various states. For increasing the production of rice sensors are equipped in the fields to track the water supply and humidity components. Whereas, identifying weeds, early stages of disease detection, recognizing failed crops, spraying fertilizers and continuous monitoring from bleats, locust and other dangerous insects are some of the technical collaboration with UAVs with respect farming sector. However, use of UAVs in real time environment involves many security and privacy challenges. In order to preserve UAVs from external vulnerabilities and hacking the collaborative environment requires a tough security model. In this proposed article a framework is implemented applying FIBOR security model on UAVs to suppress the threats from data hackers and protect the data in cloud from attackers. This proposed model enabled with drone technology provides a secured framework and also improves the crop yield by 15% by adapting a controlled network environment.


Author(s):  
Prashant Kumar Patra ◽  
Padma Lochan Pradhan

The access control is a mechanism that a system grants, revoke the right to access the object. The subject and object can able to integrate, synchronize, communicate and optimize through read, write and execute over a UFS. The access control mechanism is the process of mediating each and every request to system resources, application and data maintained by a operating system and determining whether the request should be approve, created, granted or denied as per top management policy. The AC mechanism, management and decision is enforced by implementing regulations established by a security policy. The management has to investigate the basic concepts behind access control design and enforcement, point out different security requirements that may need to be taken into consideration. The authors have to formulate and implement several ACM on normalizing and optimizing them step by step, that have been highlighted in proposed model for development and production purpose. This research paper contributes to the development of an optimization model that aims and objective to determine the optimal cost, time and maximize the quality of services to be invested into security model and mechanisms deciding on the measure components of UFS. This model has to apply to ACM utilities over a Web portal server on object oriented and distributed environment. This ACM will be resolve the uncertainty, un-order, un formal and unset up (U^4) problems of web portal on right time and right place of any where & any time in around the globe. It will be more measurable and accountable for performance, fault tolerance, throughput, bench marking and risk assessment on any application.


Author(s):  
Prashant Kumar Patra ◽  
Padma Lochan Pradhan

The access control is a mechanism that a system grants, revoke the right to access the object. The subject and object can able to integrate, synchronize, communicate and optimize through read, write and execute over a UFS. The access control mechanism is the process of mediating each and every request to system resources, application and data maintained by a operating system and determining whether the request should be approve, created, granted or denied as per top management policy. The AC mechanism, management and decision is enforced by implementing regulations established by a security policy. The management has to investigate the basic concepts behind access control design and enforcement, point out different security requirements that may need to be taken into consideration. The authors have to formulate and implement several ACM on normalizing and optimizing them step by step, that have been highlighted in proposed model for development and production purpose. This research paper contributes to the development of an optimization model that aims and objective to determine the optimal cost, time and maximize the quality of services to be invested into security model and mechanisms deciding on the measure components of UFS. This model has to apply to ACM utilities over a Web portal server on object oriented and distributed environment. This ACM will be resolve the uncertainty, un-order, un formal and unset up (U^4) problems of web portal on right time and right place of any where & any time in around the globe. It will be more measurable and accountable for performance, fault tolerance, throughput, bench marking and risk assessment on any application.


2020 ◽  
Vol 17 (05) ◽  
pp. 2050020
Author(s):  
Muhammad Ali Dildar ◽  
Muhammad Asif ◽  
Asma Kanwal ◽  
Maaz Bin Ahmad ◽  
Syed A. Gilani

Since the last few decades, research in the area of robotics technology has been emphasizing in the modeling and development of cognitive machines. A cognitive machine can have multiple cognitive capabilities to be programmed to make it artificially intelligent. Numerous cognitive modules interact to mimic human behavior in machines and result in such a heavily coupled system that a minor change in logic or hardware may affect a large number of its modules. To address such a problem, several middlewares exist to ease the development of cognitive machines. Although these layers decouple the process of logic building and communication infrastructure of modules, they are language-dependent and have their limitations. A cognitive module developed for one research work cannot be a part of another research work resulting in the re-invention of the wheel. This paper proposes a RESTful technology-based framework that provides language-independent access to low-level control of the iCub’s sensory-motor system. Moreover, the model is flexible enough to provide hybrid communications between cognitive modules running on different platforms and operating systems. Furthermore, a cognitive client is developed to test the proposed model. The experimental analysis performed by creating different scenarios shows the effectiveness of the proposed framework.


2019 ◽  
Vol 59 (2) ◽  
pp. 126-133
Author(s):  
Haider Tarish Haider ◽  
Dhiaa Halboot Muhsen ◽  
Haider Ismael Shahadib ◽  
Ong Hang See

Recent developments in communication and information technologies, plus the emerging of the Internet of Things (IoT) and machine to machine (M2M) principles, create the need to protect data from multiple types of attacks. In this paper, a secure and high capacity data communication model is proposed to protect the transmitted data based on identical frames between a secret and cover data. In this model, the cover data does not convey any embedded data (as in normal steganography system) or modify the secret message (as in traditional cryptography techniques). Alternatively, the proposed model sends the positions of the cover frames that are identical with the secret frames to the receiver side in order to recover the secret message. One of the significant advantages of the proposed model is the size of the secret key message which is considerably larger than the cover size, it may be even hundred times larger. Accordingly, the experimental results demonstrate a superior performance in terms of the capacity rate as compared to the traditional steganography techniques. Moreover, it has an advantage in terms of the required bandwidth to send the data or the required memory for saving when compared to the steganography methods, which need a bandwidth or memory up to 3-5 times of the original secret message. Where the length of the secret key (positions of the identical frames) that should be sent to the receiver increases by only 25% from the original secret message. This model is suitable for applications with a high level of security, high capacity rate and less bandwidth of communication or low storage devices.


Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6747
Author(s):  
Radomir Prodanović ◽  
Dejan Rančić ◽  
Ivan Vulić ◽  
Nenad Zorić ◽  
Dušan Bogićević ◽  
...  

Nowadays, wireless sensor networks (WSN) are widely used in agriculture monitoring to improve the quality and productivity of farming. In this application, sensors gather different types of data (i.e., humidity, carbon dioxide level, and temperature) in real-time scenarios. Thus, data gathering, transmission, and rapid response to new circumstances require a secured data mechanism to avoid malicious adversaries. Therefore, this paper focuses on data security from the data origin source to the end-user, and proposes a general data security model that is independent of the network topology and structure, and can be widely used in the agriculture monitoring application. The developed model considers practical aspects, the architecture of the sensor node, as well as the necessity to save energy while ensuring data security, and optimize the model through the application of organizational and technical measures. The model evaluation is conducted through simulation in terms of energy consumption. The result shows that the proposed model ensures good data security at the cost of a slight increase in energy consumption at receiver and sender nodes, and energy consumption per bit, up to 2%, 7%, and 1.3%, respectively, due to overhead added for authentication in the network.


2018 ◽  
Vol 7 (2.14) ◽  
pp. 53
Author(s):  
Mumtazimah Mohamad ◽  
Wan Nor Shuhadah Wan Nik ◽  
Zahrahtul Amani Zakaria ◽  
Arifah Che Alhadi

In this paper, operational and complexity analysis are investigated for a proposed model of ensemble Artificial Neural Networks (ANN) multiple classifiers. The main idea to this is to employ more classifiers to obtain a more accurate prediction as well as to enhance the classification capabilities in case of larger data. The classification result analyzed between a single classifier and multiple classifiers followed by the estimates of upper bounds of converged functional error with the partitioning of the benchmark dataset. The estimates derived using the Apriori method shows that the proposed ensemble ANN algorithm with a different approach is feasible where such problems with a high number of inputs and classes can be solved with time complexity of O(n^k ) for some k, which is a type of polynomial. This result is in line with the significant performance achieved by the diversity rule applied with the use of reordering technique. As conclusion, an ensemble heterogeneous ANN classifier is practical and relevant to theoretical and experimental of combiners for the ensemble ANN classifier systems for a large dataset.  


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Amr M. Sauber ◽  
Ahmed Awad ◽  
Amr F. Shawish ◽  
Passent M. El-Kafrawy

With the daily increase of data production and collection, Hadoop is a platform for processing big data on a distributed system. A master node globally manages running jobs, whereas worker nodes process partitions of the data locally. Hadoop uses MapReduce as an effective computing model. However, Hadoop experiences a high level of security vulnerability over hybrid and public clouds. Specially, several workers can fake results without actually processing their portions of the data. Several redundancy-based approaches have been proposed to counteract this risk. A replication mechanism is used to duplicate all or some of the tasks over multiple workers (nodes). A drawback of such approaches is that they generate a high overhead over the cluster. Additionally, malicious workers can behave well for a long period of time and attack later. This paper presents a novel model to enhance the security of the cloud environment against untrusted workers. A new component called malicious workers’ trap (MWT) is developed to run on the master node to detect malicious (noncollusive and collusive) workers as they convert and attack the system. An implementation to test the proposed model and to analyze the performance of the system shows that the proposed model can accurately detect malicious workers with minor processing overhead compared to vanilla MapReduce and Verifiable MapReduce (V-MR) model [1]. In addition, MWT maintains a balance between the security and usability of the Hadoop cluster.


Sign in / Sign up

Export Citation Format

Share Document