scholarly journals Blockchain-Based Security Model for LoRaWAN Firmware Updates

2022 ◽  
Vol 11 (1) ◽  
pp. 5
Author(s):  
Njabulo Sakhile Mtetwa ◽  
Paul Tarwireyi ◽  
Cecilia Nombuso Sibeko ◽  
Adnan Abu-Mahfouz ◽  
Matthew Adigun

The Internet of Things (IoT) is changing the way consumers, businesses, and governments interact with the physical and cyber worlds. More often than not, IoT devices are designed for specific functional requirements or use cases without paying too much attention to security. Consequently, attackers usually compromise IoT devices with lax security to retrieve sensitive information such as encryption keys, user passwords, and sensitive URLs. Moreover, expanding IoT use cases and the exponential growth in connected smart devices significantly widen the attack surface. Despite efforts to deal with security problems, the security of IoT devices and the privacy of the data they collect and process are still areas of concern in research. Whenever vulnerabilities are discovered, device manufacturers are expected to release patches or new firmware to fix the vulnerabilities. There is a need to prioritize firmware attacks, because they enable the most high-impact threats that go beyond what is possible with traditional attacks. In IoT, delivering and deploying new firmware securely to affected devices remains a challenge. This study aims to develop a security model that employs Blockchain and the InterPlanentary File System (IPFS) to secure firmware transmission over a low data rate, constrained Long-Range Wide Area Network (LoRaWAN). The proposed security model ensures integrity, confidentiality, availability, and authentication and focuses on resource-constrained low-powered devices. To demonstrate the utility and applicability of the proposed model, a proof of concept was implemented and evaluated using low-powered devices. The experimental results show that the proposed model is feasible for constrained and low-powered LoRaWAN devices.

Author(s):  
Bhakti J. Soochik

Abstract: This paper simulate IoT based smart companies and make our networking infrastructure effective, efficient and most importantly accurate with security. The simulator used is Cisco Packet Tracer, this tool has been used form many years in networking. Main strength of the tool is the offering of a variety of network components that simulate a real network, devices would then need to be interconnected and configured in order to create a network. Technology plays a critical role in all daily activities of the present day. One of these needs is to create a smart office that controls operation and turns off electronic devices via a smartphone. This implementation can be implemented effectively using package tracking software that includes IoT functions to control and simulate a smart office. The latest version of the tool Cisco introduced IoT functionalities, and now it is possible to add to the network smart devices, components, sensors, actuators and also devices that simulate microcontrollers such as Arudino or Raspberry Pi. All the IoT devices can be run on standard programs or can be customized by programming them with Java, Phyton or Blockly. This makes Cisco Packet Tracer an ideal tool for building IoT practical simulations. Smart-Industrial smart-company office offer simulation of a power plant that produces and stores electricity via solar panels and wind turbines. All the electricity is produced by smart devices, then stored and utilized to power a production chain filled with smart sensor and actuators. IoT security features are also introduced in the simulations. Keywords: Internet of things (IOT), Campus Network (CN), networking, wide area network (WAN).


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 772 ◽  
Author(s):  
Houshyar Honar Pajooh ◽  
Mohammad Rashid ◽  
Fakhrul Alam ◽  
Serge Demidenko

The proliferation of smart devices in the Internet of Things (IoT) networks creates significant security challenges for the communications between such devices. Blockchain is a decentralized and distributed technology that can potentially tackle the security problems within the 5G-enabled IoT networks. This paper proposes a Multi layer Blockchain Security model to protect IoT networks while simplifying the implementation. The concept of clustering is utilized in order to facilitate the multi-layer architecture. The K-unknown clusters are defined within the IoT network by applying techniques that utillize a hybrid Evolutionary Computation Algorithm while using Simulated Annealing and Genetic Algorithms. The chosen cluster heads are responsible for local authentication and authorization. Local private blockchain implementation facilitates communications between the cluster heads and relevant base stations. Such a blockchain enhances credibility assurance and security while also providing a network authentication mechanism. The open-source Hyperledger Fabric Blockchain platform is deployed for the proposed model development. Base stations adopt a global blockchain approach to communicate with each other securely. The simulation results demonstrate that the proposed clustering algorithm performs well when compared to the earlier reported approaches. The proposed lightweight blockchain model is also shown to be better suited to balance network latency and throughput as compared to a traditional global blockchain.


Author(s):  
Fei Meng ◽  
Leixiao Cheng ◽  
Mingqiang Wang

AbstractCountless data generated in Smart city may contain private and sensitive information and should be protected from unauthorized users. The data can be encrypted by Attribute-based encryption (CP-ABE), which allows encrypter to specify access policies in the ciphertext. But, traditional CP-ABE schemes are limited because of two shortages: the access policy is public i.e., privacy exposed; the decryption time is linear with the complexity of policy, i.e., huge computational overheads. In this work, we introduce a novel method to protect the privacy of CP-ABE scheme by keyword search (KS) techniques. In detail, we define a new security model called chosen sensitive policy security: two access policies embedded in the ciphertext, one is public and the other is sensitive and hidden. If user's attributes don't satisfy the public policy, he/she cannot get any information (attribute name and its values) of the hidden one. Previous CP-ABE schemes with hidden policy only work on the “AND-gate” access structure or their ciphertext size or decryption time maybe super-polynomial. Our scheme is more expressive and compact. Since, IoT devices spread all over the smart city, so the computational overhead of encryption and decryption can be shifted to third parties. Therefore, our scheme is more applicable to resource-constrained users. We prove our scheme to be selective secure under the decisional bilinear Diffie-Hellman (DBDH) assumption.


Author(s):  
Domenico Garlisi ◽  
Alessio Martino ◽  
Jad Zouwayhed ◽  
Reza Pourrahim ◽  
Francesca Cuomo

AbstractThe interest in the Internet of Things (IoT) is increasing both as for research and market perspectives. Worldwide, we are witnessing the deployment of several IoT networks for different applications, spanning from home automation to smart cities. The majority of these IoT deployments were quickly set up with the aim of providing connectivity without deeply engineering the infrastructure to optimize the network efficiency and scalability. The interest is now moving towards the analysis of the behavior of such systems in order to characterize and improve their functionality. In these IoT systems, many data related to device and human interactions are stored in databases, as well as IoT information related to the network level (wireless or wired) is gathered by the network operators. In this paper, we provide a systematic approach to process network data gathered from a wide area IoT wireless platform based on LoRaWAN (Long Range Wide Area Network). Our study can be used for profiling IoT devices, in order to group them according to their characteristics, as well as detecting network anomalies. Specifically, we use the k-means algorithm to group LoRaWAN packets according to their radio and network behavior. We tested our approach on a real LoRaWAN network where the entire captured traffic is stored in a proprietary database. Quite important is the fact that LoRaWAN captures, via the wireless interface, packets of multiple operators. Indeed our analysis was performed on 997, 183 packets with 2169 devices involved and only a subset of them were known by the considered operator, meaning that an operator cannot control the whole behavior of the system but on the contrary has to observe it. We were able to analyze clusters’ contents, revealing results both in line with the current network behavior and alerts on malfunctioning devices, remarking the reliability of the proposed approach.


Author(s):  
Olof Magnusson ◽  
Rikard Teodorsson ◽  
Joakim Wennerberg ◽  
Stig Arne Knoph

LoRaWAN (long-range wide-area network) is an emerging technology for the connection of internet of things (IoT) devices to the internet and can as such be an important part of decision support systems. In this technology, IoT devices are connected to the internet through gateways by using long-range radio signals. However, because LoRaWAN is an open network, anyone has the ability to connect an end device or set up a gateway. Thus, it is important that gateways are designed in such a way that their ability to be used maliciously is limited. This chapter covers relevant attacks against gateways and potential countermeasures against them. A number of different attacks were found in literature, including radio jamming, eavesdropping, replay attacks, and attacks against the implementation of what is called beacons in LoRaWAN. Countermeasures against these attacks are discussed, and a suggestion to improve the security of LoRaWAN is also included.


Sensors ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 209 ◽  
Author(s):  
Steven J. Johnston ◽  
Philip J. Basford ◽  
Florentin M. J. Bulot ◽  
Mihaela Apetroaie-Cristea ◽  
Natasha H. C. Easton ◽  
...  

Air Quality (AQ) is a very topical issue for many cities and has a direct impact on citizen health. The AQ of a large UK city is being investigated using low-cost Particulate Matter (PM) sensors, and the results obtained by these sensors have been compared with government operated AQ stations. In the first pilot deployment, six AQ Internet of Things (IoT) devices have been designed and built, each with four different low-cost PM sensors, and they have been deployed at two locations within the city. These devices are equipped with LoRaWAN wireless network transceivers to test city scale Low-Power Wide Area Network (LPWAN) coverage. The study concludes that (i) the physical device developed can operate at a city scale; (ii) some low-cost PM sensors are viable for monitoring AQ and for detecting PM trends; (iii) LoRaWAN is suitable for city scale sensor coverage where connectivity is an issue. Based on the findings from this first pilot project, a larger LoRaWAN enabled AQ sensor network is being deployed across the city of Southampton in the UK.


2013 ◽  
Vol 22 (01) ◽  
pp. 1350002 ◽  
Author(s):  
RAMI RASHKOVITS ◽  
AVIGDOR GAL

Users of wide area network applications are usually concerned about both response time and content validity. The common solution of client-side caching that reuses cached content based on arbitrary time-to-live may not be applicable in narrow bandwidth environment, where heavy load is imposed on sparse transmission abilities. In such cases, some users may wait for a long time for fresh content extracted from the origin server although they would settle for obsolescent content, while other users may receive the cached copy which is considered valid, although they would be ready to wait longer for fresher content. In this work, a new model for caching is introduced, where clients introduce preferences regarding their expectations for the time they are willing to wait, and the level of obsolescence they are willing to tolerate. The cache manager considers user preferences, and is capable of balancing the relative importance of each dimension. A cost model is used to determine which of the following three alternatives is most promising: delivery of a local cached copy, delivery of a copy from a cooperating cache, or delivery of a fresh copy from the origin server. The proposed model is proven to be useful by experiments that used both synthetic data and real Web traces simulation. The experiments reveal that using the proposed model, it becomes possible to meet client needs with reduced latency. We also show the benefit of cache cooperation in increasing hit ratios and reducing latency. A prototype of the proposed model was built and deployed on real-world environment demonstrating how users can set preferences towards Web pages, and how cache managers are affected.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4816
Author(s):  
Syed Ghazanfar Abbas ◽  
Ivan Vaccari ◽  
Faisal Hussain ◽  
Shahzaib Zahid ◽  
Ubaid Ullah Fayyaz ◽  
...  

Internet of things (IoT) is a technology that enables our daily life objects to connect on the Internet and to send and receive data for a meaningful purpose. In recent years, IoT has led to many revolutions in almost every sector of our society. Nevertheless, security threats to IoT devices and networks are relentlessly disruptive, because of the proliferation of Internet technologies. Phishing is one of the most prevalent threats to all Internet users, in which attackers aim to fraudulently extract sensitive information of a user or system, using fictitious emails, websites, etc. With the rapid increase in IoT devices, attackers are targeting IoT devices such as security cameras, smart cars, etc., and perpetrating phishing attacks to gain control over such vulnerable devices for malicious purposes. In recent decades, such scams have been spreading, and they have become increasingly advanced over time. By following this trend, in this paper, we propose a threat modelling approach to identify and mitigate the cyber-threats that can cause phishing attacks. We considered two significant IoT use cases, i.e., smart autonomous vehicular system and smart home. The proposed work is carried out by applying the STRIDE threat modelling approach to both use cases, to disclose all the potential threats that may cause a phishing attack. The proposed threat modelling approach can support the IoT researchers, engineers, and IoT cyber-security policymakers in securing and protecting the potential threats in IoT devices and systems in the early design stages, to ensure the secure deployment of IoT devices in critical infrastructures.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2384
Author(s):  
Derek Heeger ◽  
Maeve Garigan ◽  
Eirini Eleni Tsiropoulou ◽  
Jim Plusquellic

Internet of Things (IoT) devices rely upon remote firmware updates to fix bugs, update embedded algorithms, and make security enhancements. Remote firmware updates are a significant burden to wireless IoT devices that operate using low-power wide-area network (LPWAN) technologies due to slow data rates. One LPWAN technology, Long Range (LoRa), has the ability to increase the data rate at the expense of range and noise immunity. The optimization of communications for maximum speed is known as adaptive data rate (ADR) techniques, which can be applied to accelerate the firmware update process for any LoRa-enabled IoT device. In this paper, we investigate ADR techniques in an application that provides remote monitoring of cattle using small, battery-powered devices that transmit data on cattle location and health using LoRa. In addition to issues related to firmware update speed, there are significant concerns regarding reliability and security when updating firmware on mobile, energy-constrained devices. A malicious actor could attempt to steal the firmware to gain access to embedded algorithms or enable faulty behavior by injecting their own code into the device. A firmware update could be subverted due to cattle moving out of the LPWAN range or the device battery not being sufficiently charged to complete the update process. To address these concerns, we propose a secure and reliable firmware update process using ADR techniques that is applicable to any mobile or energy-constrained LoRa device. The proposed system is simulated and then implemented to evaluate its performance and security properties.


Sign in / Sign up

Export Citation Format

Share Document