scholarly journals Evaluation of Synthetic Conditions for H3PO4 Chemically Activated Rice Husk and Preparation of Honeycomb Monoliths

2016 ◽  
Vol 11 (3) ◽  
pp. 245 ◽  
Author(s):  
J.M. Jandosov ◽  
N.V Shikina ◽  
M.A. Bijsenbayev ◽  
M.E. Shamalov ◽  
Z.R. Ismagilov ◽  
...  

<p>Activated carbons in this work were prepared from rice husk by phosphoric acid activation followed by alkaline desilication. Pseudo-random selection of 16 rice husk samples was subjected to carbonization at the following conditions: 0.5 to 2 h of activation time, 300-600 <sup>o</sup>С and Н<sub>3</sub>РО<sub>4</sub>/precursor (wt/wt) impregnation ratio of 0.5 to 2. Concentration of NaOH desilication solution varied from 0.5 to 2M. It was found that out of the four factors impregnation ratio is clearly the strongest and at the impregnation ratio of 2 for 1 h at 500 °C N<sub>2</sub> BET-surface area reaches 1690 m<sup>2</sup>/g (S<sub>BET(Ar)</sub> = 2492 m<sup>2</sup>/g) while pore volume becomes 1.95 cm<sup>3</sup>/g. Elemental analysis showed highest carbon content for this sample (87.96%). All samples have insignificant amount of Si and traces of metals, but considerable amount of phosphorus. Blocks of honeycomb structure prepared from Ca-montmorillonite and desilicated carbonized rice husk (impregnation ratio is 1.5, 1 h at 600 <sup>o</sup>C) have BET-surface area obtained by thermal desorption of argon up to 856 m<sup>2</sup>/g.</p>

2014 ◽  
Vol 881-883 ◽  
pp. 579-583 ◽  
Author(s):  
Ling Zhi Chen ◽  
Dong Xu Miao ◽  
Xiao Jie Feng ◽  
Jian Zhong Xu

Activated carbons (AC) were produced by chemical activation with potassium hydroxide (KOH) at 800°C from chars that were carbonized from reedy grass leaves at 450°C in N2atmosphere. The effects of the weight ratio of KOH/char ( impregnation ratio), activation temperature and duration time were examined. Adsorption capacity was demonstrated with iodine number. BET surface area, pore volume and pore size of activated carbons were characterized by N2adsorption isotherms. The maximum surface area and iodine number of the AC was 1100 m2/g and 1080 mg/g produced at 800°C for2h and impregnation ratio is 4:1.The characteristics of activated carbons were determined by Infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). Thermal gravimetry (TG/DTA) analysis of raw material was carried out.


2012 ◽  
Vol 602-604 ◽  
pp. 85-89 ◽  
Author(s):  
J. Jandosov ◽  
Zulhair A. Mansurov ◽  
Mahmut A. Bijsenbayev ◽  
Marat I. Tulepov ◽  
Zinfer R. Ismagilov ◽  
...  

Highly porous activated carbons were prepared through chemical activation of rice husk (RH). For the sake of optimization of the process, sixteen activated carbon samples were obtained from RH by means of carbonization in presence of H3PO4, and successive alkaline desilication, at the following conditions: activation time– 0.5 to 2 h, temperature– 300 to 600 ºС and Н3РО4/RH (wt/wt) impregnation ratio– 0.5 to 2. Samples were analyzed according to the data of thermal desorption of argon, low-temperature N2 adsorption using BET equation and BJH-calculation scheme, methylene blue (MB) adsorption studies, SEM, elemental analyses and yields. N2 BET surface area reached the value of 1690 m2/g; maximal MB adsorption capacity– 667 mg/g.


Author(s):  
Amira Ouakkaf ◽  
Fatiha Chelgham ◽  
Rekia Cherbi ◽  
Mounira Chelgham ◽  
Mustapha Houhoune ◽  
...  

Agricultural wastes can be considered as suitable raw materials for activated carbon production, as activated carbon is considered as an economical adsorption material. Seeds from biomass of Ziziphus mauritiana Lam, grown in Algerian have been valorized for activated carbon production by the phosphoric acid, activation method with pyrolysis temperatures of 400, 500 and 600 °C. The effect of changes in pyrolysis temperatures on the yield and quality of the prepared activated carbon was studied. The obtained activated carbons were characterized by FT-IR and MB adsorption, a good yield of 38,625 %, a high BET surface area of 915,58 m2/g. The removal rate of methylene blue was strongly influenced by contact time, adsorbent mass and pH. An excellent removal % of methylene blue (MB) was obtained at the preferred temperature of 500 °C (AC 500).


2012 ◽  
Vol 626 ◽  
pp. 706-710 ◽  
Author(s):  
Athiwat Sirimuangjinda ◽  
Duangduen Atong ◽  
Chiravoot Pechyen

Two activated carbons employing Scrap Tire as precursor were produced by using two different activating agents, HCl and H2SO4 (fixed impregnation ratio 1:1). Both of activated carbons were allowed by single-step to get difference carbonized at 500, 600 and 700°C in a muffle furnace for 1 h. Activated carbons differed with the physical structure, chemical and adsorption properties which were derived from Scanning Electron Microscope, and N2 adsorption/desorption isotherms. Batched sorption studies were performed to compare the iodine and methylene blue adsorption properties of two carbons. The carbon materials obtained from sulfuric acid activation of 500°C has BET surface area as high as 1066.70 m2/g, Methylene blue adsorption and Iodine number of 288.90 and 590.50 mg/g, respectively. The surface area and adsorption properties of carbon produced using sulfuric acid activation were higher than that produced using hydrochloric acid activation. The results suggest the feasibility of the process from the point of view of both porous texture and adsorption yield.


2010 ◽  
Vol 10 (1) ◽  
pp. 36-40 ◽  
Author(s):  
Amri Ismail ◽  
Hanggara Sudrajat ◽  
Desi Jumbianti

Activated carbons have been produced from the natural biomaterial durian (Durio zibethinus) seed, using phosphoric acid (H3PO4) as the activating agent. The effects of impregnation ratio, activation temperature, heating rate on the carbon surface area, porosity and mass yield are presented. A two step process has been used, the first step was a low temperature impregnation at 150 °C using phosphoric acid and the second step was the carbonization at high temperatures, namely, 600 and 900 °C. The most outstanding carbon with the highest surface area of 2123 m2/g was prepared using an impregnation ratio of 2, an activation temperature of 600 °C for 4 h and a heating rate of 1 °C/min.   Keywords: activated carbon, durian seed, phosphoric acid activation


2018 ◽  
Vol 271 ◽  
pp. 142-150 ◽  
Author(s):  
Ju Sun ◽  
Xia Liu ◽  
Shengxia Duan ◽  
Ahmed Alsaedi ◽  
Fengsong Zhang ◽  
...  

2020 ◽  
Vol 41 (1) ◽  
pp. 74-79
Author(s):  
Sahira Joshi ◽  
Bishnu K.C.

Series of activated carbons (ACs) have been prepared from Sugarcane bagasse powder by ZnCl2 activation at various impregnation ratios of ZnCl2 to Sugarcane bagasse powder of 0.25:1, 0.5:1, 1:1 and 2:1 by weight. Characteristics of the activated carbons (ACs) were determined by iodine number, methylene blue number, surface area, scanning electron microscopy (SEM) and x-ray diffraction. Iodine number (IN) indicated that, microporosity of the AC were increased with increasing impregnation ratio ZnCl2 to Sugarcane bagasse upto 1:1 then started to decrease. However, mesoporosity as well as surface area was increased progressively. The maximum value of iodine number (868 mg/g) was achieved in the AC prepared at impregnation ratio of ZnCl2 to sugarcane bagasse 1:1. SEM micrographs also show the presence of well developed pores on its surface of AC-1. The broad peaks in the XRD patterns indicated that, all the ACs is amorphous materials. From results, it is concluded that ZnCl2 concentration used in impregnation is effective for development of porosity and surface area of the AC prepared from Sugarcane bagasse.


2013 ◽  
Vol 16 (1) ◽  
pp. 22-31
Author(s):  
Phung Thi Kim Le ◽  
Kien Anh Le

Agricultural wastes are considered to be a very important feedstock for activated carbon production as they are renewable sources and low cost materials. This study present the optimize conditions for preparation of durian peel activated carbon (DPAC) for removal of methylene blue (MB) from synthetic effluents. The effects of carbonization temperature (from 673K to 923K) and impregnation ratio (from 0.2 to 1.0) with potassium hydroxide KOH on the yield, surface area and the dye adsorbed capacity of the activated carbons were investigated. The dye removal capacity was evaluated with methylene blue. In comparison with the commercial grade carbons, the activated carbons from durian peel showed considerably higher surface area especially in the suitable temperate and impregnation ratio of activated carbon production. Methylene blue removal capacity appeared to be comparable to commercial products; it shows the potential of durian peel as a biomass source to produce adsorbents for waste water treatment and other application. Optimize condition for preparation of DPAC determined by using response surface methodology was at temperature 760 K and IR 1.0 which resulted the yield (51%), surface area (786 m2/g), and MB removal (172 mg/g).


RSC Advances ◽  
2016 ◽  
Vol 6 (47) ◽  
pp. 40818-40827 ◽  
Author(s):  
Zizhang Guo ◽  
Jian Zhang ◽  
Hai Liu

This study shows that oxalic acid (OA) and succinic acid (SA) were employed to modify Phragmites australis (PA)-based activated carbons (ACs) during phosphoric acid activation to improve Rhodamine B (RhB) removal from aqueous solutions.


2012 ◽  
Vol 66 (1) ◽  
pp. 179-184 ◽  
Author(s):  
Ş. Gül ◽  
O. Eren ◽  
Ş. Kır ◽  
Y. Önal

The objective of this study is to compare the performances of catalytic ozonation processes of two activated carbons prepared from olive stone (ACOS) and apricot stone (ACAS) with commercial ones (granular activated carbon-GAC and powder activated carbon-PAC) in degradation of reactive azo dye (Reactive Red 195). The optimum conditions (solution pH and amount of catalyst) were investigated by using absorbencies at 532, 220 and 280 nm wavelengths. Pore properties of the activated carbon (AC) such as BET surface area, pore volume, pore size distribution, and pore diameter were characterized by N2 adsorption. The highest BET surface area carbon (1,275 m2/g) was obtained from ACOS with a particle size of 2.29 nm. After 2 min of catalytic ozonation, decolorization performances of ACOS and ACAS (90.4 and 91.3%, respectively) were better than that of GAC and PAC (84.6 and 81.2%, respectively). Experimental results showed that production of porous ACs with high surface area from olive and apricot stones is feasible in Turkey.


Sign in / Sign up

Export Citation Format

Share Document