scholarly journals The essential function of Swc4p - a protein shared by two chromatin-modifying complexes of the yeast Saccharomyces cerevisiae - resides within its N-terminal part.

2008 ◽  
Vol 55 (3) ◽  
pp. 603-612 ◽  
Author(s):  
Arkadiusz Miciałkiewicz ◽  
Anna Chełstowska

The Swc4p protein, encoded by an essential gene, is shared by two chromatin-remodeling complexes in Saccharomyces cerevisiae cells: NuA4 (nucleosome acetyltransferase of H4) and SWR1. The SWR1 complex catalyzes ATP-dependent exchange of the nucleosomal histone H2A for H2AZ (Htz1p). The activity of NuA4 is responsible mainly for the acetylation of the H4 histone but also for the acetylation of H2A and H2AZ. In this work we investigated the role of the Swc4p protein. Using random mutagenesis we isolated a collection of swc4 mutants and showed that the essential function of Swc4p resides in its N-terminal part, within the first 269 amino acids of the 476-amino acid-long protein. We also demonstrated that Swc4p is able to accommodate numerous mutations without losing its functionality under standard growth conditions. However, when swc4 mutants were exposed to methyl methanesulfonate (MMS), hydroxyurea or benomyl, severe growth deficiencies appeared, pointing to an involvement of Swc4p in many chromatin-based processes. The mutants' phenotypes did not result from an impairment of histone acetylation, as in the mutant which bears the shortest isolated variant of truncated Swc4p, the level of overall H4 acetylation was unchanged.

2001 ◽  
Vol 183 (17) ◽  
pp. 4950-4957 ◽  
Author(s):  
Kristen Jensen-Pergakes ◽  
Zhongmin Guo ◽  
Mara Giattina ◽  
Stephen L. Sturley ◽  
Martin Bard

ABSTRACT Saccharomyces cerevisiae transcribes two genes,ARE1 and ARE2, that contribute disproportionately to the esterification of sterols. Are2p is the major enzyme isoform in a wild-type cell growing aerobically. This likely results from a combination of differential transcription initiation and transcript stability. By using ARE1 andARE2 promoter fusions to lacZ reporters, we demonstrated that transcriptional initiation from theARE1 promoter is significantly reduced compared to that from the ARE2 promoter. Furthermore, the half-life of the ARE2 mRNA is approximately 12 times as long as that of the ARE1 transcript. We present evidence that the primary role of the minor sterol esterification isoform encoded byARE1 is to esterify sterol intermediates, whereas the role of the ARE2 enzyme is to esterify ergosterol, the end product of the pathway. Accordingly, the ARE1promoter is upregulated in strains that accumulate ergosterol precursors. Furthermore, ARE1 and ARE2are oppositely regulated by heme. Under heme-deficient growth conditions, ARE1 was upregulated fivefold whileARE2 was down-regulated. ARE2 requires the HAP1 transcription factor for optimal expression, and both ARE genes are derepressed in arox1 (repressor of oxygen) mutant genetic background. We further report that the ARE genes are not subject to end product inhibition; neither ARE1 nor ARE2transcription is altered in an are mutant background, nor does overexpression of either ARE gene alter the response of the ARE-lacZ reporter constructs. Our observations are consistent with an important physiological role for Are1p during anaerobic growth when heme is limiting and sterol precursors may accumulate. Conversely, Are2p is optimally required during aerobiosis when ergosterol is plentiful.


1996 ◽  
Vol 16 (8) ◽  
pp. 4305-4311 ◽  
Author(s):  
X Liu ◽  
B Li ◽  
GorovskyMA

Although variants have been identified for every class of histone, their functions remain unknown. We have been studying the histone H2A variant hv1 in the ciliated protozoan Tetrahymena thermophila. Sequence analysis indicates that hv1 belongs to the H2A.F/Z type of histone variants. On the basis of the high degree of evolutionary conservation of this class of histones, they are proposed to have one or more distinct and essential functions that cannot be performed by their major H2A counterparts. Considerable evidence supports the hypothesis that the hv1 protein in T. thermophila and hv1-like proteins in other eukaryotes are associated with active chromatin. In T. thermophila, simple mass transformation and gene replacement techniques have recently become available. In this report, we demonstrate that either the HTA1 gene or the HTA2 gene, encoding the major H2As, can be completely replaced by disrupted genes in the polyploid, transcriptionally active macronucleus, indicating that neither of the two genes is essential. However, only some of the HTA3 genes encoding hv1 can be replaced by disrupted genes, indicating that the H2A.F/Z type variants have an essential function that cannot be performed by the major H2A genes. Thus, an essential gene in T. thermophila can be defined by the fact that it can be partially, but not completely, eliminated from the polyploid macronucleus. To our knowledge, this study represents the first use of gene disruption technology to study core histone gene function in any organism other than yeast and the first demonstration of an essential gene in T. thermophila using these methods. When a rescuing plasmid carrying a wild-type HTA3 gene was introduced into the T. thermophila cells, the endogenous chromosomal HTA3 could be completely replaced, defining a gene replacement strategy that can be used to analyze the function of essential genes.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3359
Author(s):  
Dimitris Liakopoulos

In the yeast Saccharomyces cerevisiae DNA replication and spindle assembly can overlap. Therefore, signaling mechanisms modulate spindle dynamics in order to ensure correct timing of chromosome segregation relative to genome duplication, especially when replication is incomplete or the DNA becomes damaged. This review focuses on the molecular mechanisms that coordinate DNA replication and spindle dynamics, as well as on the role of spindle-dependent forces in DNA repair. Understanding the coupling between genome duplication and spindle function in yeast cells can provide important insights into similar processes operating in other eukaryotic organisms, including humans.


1992 ◽  
Vol 12 (4) ◽  
pp. 1879-1892 ◽  
Author(s):  
J L Davis ◽  
R Kunisawa ◽  
J Thorner

Exposure of a haploid yeast cell to mating pheromone induces transcription of a set of genes. Induction is mediated through a cis-acting DNA sequence found upstream of all pheromone-responsive genes. Although the STE12 gene product binds specifically to this sequence element and is required for maximum levels of both basal and induced transcription, not all pheromone-responsive genes are regulated in an identical manner. To investigate whether additional factors may play a role in transcription of these genes, a genetic screen was used to identify mutants able to express pheromone-responsive genes constitutively in the absence of Ste12. In this way, we identified a recessive, single gene mutation (mot1, for modifier of transcription) which increases the basal level of expression of several, but not all, pheromone-responsive genes. The mot1-1 allele also relaxes the requirement for at least one other class of upstream activating sequence and enhances the expression of another gene not previously thought to be involved in the mating pathway. Cells carrying mot1-1 grow slowly at 30 degrees C and are inviable at 38 degrees C. The MOT1 gene was cloned by complementation of this temperature-sensitive lethality. Construction of a null allele confirmed that MOT1 is an essential gene. MOT1 residues on chromosome XVI and encodes a large protein of 1,867 amino acids which contains all seven of the conserved domains found in known and putative helicases. The product of MOT1 is strikingly homologous to the Saccharomyces cerevisiae SNF2/SW12 and RAD54 gene products over the entire helicase region.


1986 ◽  
Vol 6 (4) ◽  
pp. 1218-1227
Author(s):  
L Naumovski ◽  
E C Friedberg

The RAD3 gene of Saccharomyces cerevisiae, which is involved in excision repair of DNA and is essential for cell viability, was mutagenized by site-specific and random mutagenesis. Site-specific mutagenesis was targeted to two regions near the 5' and 3' ends of the coding region, selected on the basis of amino acid sequence homology with known nucleotide binding and with known specific DNA-binding proteins, respectively. Two mutations in the putative nucleotide-binding region and one in the putative DNA-binding region inactivate the excision repair function of the gene, but not the essential function. A gene encoding two tandem mutations in the putative DNA-binding region is defective in both excision repair and essential functions of RAD3. Seven plasmids were isolated following random mutagenesis with hydroxylamine. Mutations in six of these plasmids were identified by gap repair of mutant plasmids from the chromosome of strains with previously mapped rad3 mutations, followed by DNA sequencing. Three of these contain missense mutations which inactivate only the excision repair function. The other three carry nonsense mutations which inactivate both the excision repair and essential functions. Collectively our results indicate that the RAD3 excision repair function is more sensitive to inactivation than is the essential function. Overexpression of wild-type Rad3 protein and a number of rad3 mutant proteins did not affect the UV resistance of wild-type yeast cells. However, overexpression of Rad3-2 protein rendered wild-type cells partially UV sensitive, indicating that excess Rad3-2 protein is dominant to the wild-type form. These and other results suggest that Rad3-2 protein retains its affinity for damaged DNA or other substrates, but is not catalytically active in excision repair.


Endocrinology ◽  
2010 ◽  
Vol 151 (4) ◽  
pp. 1948-1958 ◽  
Author(s):  
Elena Amendola ◽  
Remo Sanges ◽  
Antonella Galvan ◽  
Nina Dathan ◽  
Giacomo Manenti ◽  
...  

We report here the mapping of a chromosomal region responsible for strain-specific development of congenital hypothyroidism in mice heterozygous for null mutations in genes encoding Nkx2-1/Titf1 and Pax8. The two strains showing a differential predisposition to congenital hypothyroidism contain several single-nucleotide polymorphisms in this locus, one of which leads to a nonsynonymous amino acid change in a highly conserved region of Dnajc17, a member of the type III heat-shock protein-40 (Hsp40) family. We demonstrate that Dnajc17 is highly expressed in the thyroid bud and had an essential function in development, suggesting an important role of this protein in organogenesis and/or function of the thyroid gland.


2002 ◽  
Vol 383 (10) ◽  
pp. 1475-1480 ◽  
Author(s):  
M. Bagnat ◽  
K. Simons

Abstract Cellular membranes contain many types and species of lipids. One of the most important functional consequences of this heterogeneity is the existence of microdomains within the plane of the membrane. Sphingolipid acyl chains have the ability of forming tightly packed platforms together with sterols. These platforms or lipid rafts constitute segregation and sorting devices into which proteins specifically associate. In budding yeast, Saccharomyces cerevisiae, lipid rafts serve as sorting platforms for proteins destined to the cell surface. The segregation capacity of rafts also provides the basis for the polarization of proteins at the cell surface during mating. Here we discuss some recent findings that stress the role of lipid rafts as key players in yeast protein sorting and cell polarity.


Sign in / Sign up

Export Citation Format

Share Document