scholarly journals Betulinic acid targets drug-resistant human gastric cancer cells by inducing autophagic cell death, suppresses cell migration and invasion, and modulates the ERK/MEK signaling pathway

Author(s):  
Hongjuan Wang ◽  
Hongxia Wang ◽  
Ling Ge ◽  
Yanying Zhao ◽  
Kongxi Zhu ◽  
...  

The main purpose of this study was to examine the anticancer effects of betulinic acid – a plant triterpene, against gastric cancer, along with demonstrating its underlying mechanism. The MTT assay and clonogenic assays were executed to assess cellular viability in control and betulinic acid treated cells. Transmission electron microscopy and western blotting were implemented to study autophagy stimulation by betulinic acid. The ERK/MEK signaling pathway was monitored by western blotting. Migration and invasion of SGC-7901 cells was investigated via transwell chamber assay. Results of this investigation indicated that betulinic acid induced remarkable cytotoxicity against gastric cancer SGC-7901 cells, in contrast to normal gastric GES-1 cells. The cytotoxicity of betulinic acid was observed due to its autophagy stimulation tendency in target cells. Autophagic cell death was supported by the data attained from western blotting showing enhanced LC3-II, and lowered LC3-I and p62 expressions. Moreover, betulinic acid was observed to block the ERK/MEK signaling pathway in SGC-7901 cells, which was associated with declined levels of expressions of the phosphorylated ERK and MEK proteins. Finally, the transwell chamber assay revealed a potential lowering of migration and invasion by betulinic acid in the SGC-7901 cells. In conclusion, these results demonstrated that betulinic acid exhibited significant anti-gastric cancer effects mediated via autophagy induction, blocking of ERK/MEK signaling and suppression of migration and invasion. Therefore, betulinic acid may prove as a lead molecule in gastric cancer management and research.

Author(s):  
Chunsheng Li ◽  
Jingrong Dong ◽  
Zhenqi Han ◽  
Kai Zhang

MicroRNAs (miRNAs) are reportedly involved in gastric cancer development and progression. In particular, miR-219-5p has been reported to be a tumor-associated miRNA in human cancer. However, the role of miR-219-5p in gastric cancer remains unclear. In this study, we investigated for the first time the potential role and underlying mechanism of miR-219-5p in the proliferation, migration, and invasion of human gastric cancer cells. miR-219-5p was found to be markedly decreased in gastric cancer tissues and cell lines compared with adjacent tissues and normal gastric epithelial cells. miR-219-5p mimics or anti-miR-219-5p was transfected into gastric cancer cell lines to overexpress or suppress miR-219-5p expression, respectively. Results showed that miR-219-5p overexpression significantly decreased the proliferation, migration, and invasion of gastric cancer cells. Conversely, miR-219-5p suppression demonstrated a completely opposite effect. Bioinformatics and luciferase reporter assays indicated that miR-219-5p targeted the 3′-untranslated region of the liver receptor homolog-1 (LRH-1), a well-characterized oncogene. Furthermore, miR-219-5p inhibited the mRNA and protein levels of LRH-1. LRH-1 mRNA expression was inversely correlated with miR-219-5p expression in gastric cancer tissues. miR-219-5p overexpression significantly decreased the Wnt/β-catenin signaling pathway in gastric cancer cells. Additionally, LRH-1 restoration can markedly reverse miR-219-5p-mediated tumor suppressive effects. Our study suggests that miR-219-5p regulated the proliferation, migration, and invasion of human gastric cancer cells by suppressing LRH-1. miR-219-5p may be a potential target for gastric cancer therapy.


2020 ◽  
Author(s):  
Rui Su ◽  
Enhong Zhao ◽  
Jun Zhang

Abstract MiRNA operates as a tumor suppressor or carcinogen to regulate cell proliferation, metastasis, invasion, differentiation, apoptosis and metabolic process. In the present research, we investigated the effect and mechanism of miR496 in human gastric cancer cells. Cell proliferation was measured by CCK8 and clonogenic assay. Transwell test was performed to detect cell migration and invasion. Flow cytometry analysis was used to evaluate cell apoptosis. Bioinformatics software targetscan was used for the screening of miR-496’s target gene. MiR-496 was down regulated in three gastric cancer cell lines, SGC-790, AGS and MKN45 compared with normal gastric epithelial cell line GES-1. MiR-496 mimics inhibited the proliferation of AGS cells after the transfection for 48 h and 72 h. The migration and invasion of AGS cells were also inhibited by the transfection of miR-496 mimics. In addition, miR-496 mimics induced the apoptosis through up regulating the levels of Bax and Active Caspase3 and down regulating the levels of Bcl-2 and Total Caspase3. Bioinformatics analysis showed that there was a binding site between miR-496 and LYN kinase (LYN). MiR-496 mimics could inhibit the expression of LYN in AGS cells. The overexpression of LYN blocked the inhibition of tumor cell growth, as well as the inhibition of AKT/mTOR signaling pathway induced by miR-496 in gastric cancer cells. In conclusion, miR-496 inhibited the proliferation through the AKT/mTOR signaling pathway via targeting LYN in gastric cancer cells. Our research provides a new potential target for clinical diagnosis and targeted treatment of gastric cancer.


2021 ◽  
Author(s):  
Rui Liu ◽  
Jun Song ◽  
Qingsheng Fu ◽  
Gang Liu ◽  
Chengxiong Zhang ◽  
...  

Abstract Purpose Tubby-like protein 3 (TULP3), a member of the tubby family, has been related to the development of nervous system by gene knockout researches. Nevertheless, the regulatory mechanism and role of TULP3 in the gastric cancer are not clear. Current research is the first probe into the regulatory effect of TULP3 in the gastric cancer. Methods Western blotting together with real time polymerase chain reaction (PCR) were employed for the quantitative detection of TULP3 expression in the gastric cancer and consecutive non-cancerous tissues, and gastric cancer cells. Kaplan-Meier method along with Log-rank test was exploited for the determination of the disease-free survival rate and overall survival time of patient containing with different expression of TULP3 in tumors. The roles of TULP3 in invasion, migration as well as proliferation of the gastric cancer cell in vivo and in vitro through utilizing colony formation test, MTT test, wound-healing test, transwell test and mouse xenograft model. Western blotting assay was implemented in order to clarify the potential molecular mechanisms. Furthermore, electron microscopy and western blot were evaluated TULP3 expression in gastric cancer patient extracted serum exosomes. Results TULP3 expression levels were remarkably up-regulated in the gastric cancer tissues and cells. Subsequent functional assays demonstrated that TULP3 downregulation suppressed invasion, migration as well as the proliferation of the gastric cancer cell. Mechanism assays depicted that the PTEN/Akt/Snail signaling pathway can inhibit invasion, migration as well as the proliferation of the gastric cancer cell via TULP3 silencing. Finally, we found that the expression of TULP3 could be determined in the extracted serum exons. The expression of TULP3 in gastric cancer group was higher in comparison with normal group. Conclusion Our outcomes reveal that TULP3 probably play a role in the diagnosis together with the prognostic biomarkers of gastric cancer.


2021 ◽  
Vol 18 (10) ◽  
pp. 2025-2030
Author(s):  
Chunsong Yu ◽  
Xuehong Wu ◽  
Bihua Yao ◽  
Huaxing Tao

Purpose: To study the role and therapeutic potential of acetyl-CoA-carboxylase-α (ACC) in the management of gastric cancer. Methods: Expression of ACC in gastric cancer cell lines was determined using quantitative real-time polymerase chain reaction (qRT-PCR). Lipofectamine 2000 reagent was used for transfection, while cell viability was determined by MTT assay. Apoptotic cell death was assayed with 4′, 6-diamidino-2- phenylindole (DAPI) and acridine orange/ethidium bromide (AO/EB) staining. The proportion of apoptotic cells was estimated with Annexin V/PI staining. Wound healing and Transwell assays were employed to monitor cell migration and invasion, while protein expression was determined using western blotting. Results: The results showed that ACC was significantly enhanced in SNU-1 gastric cancer cells (4.2- fold). Silencing of ACC in SNU-1 gastric cancer cells caused significant decrease in cell proliferation (p < 0.05). Electron microscopy examination showed that ACC silencing triggered autophagic cell death in SNU-1 cells, and increased expression of LC3 II. Results from DAPI and AO/EB assays demonstrated that ACC silencing also promoted apoptosis in SNU-1 gastric cancer cells. Annexin V/PI assay results revealed that apoptotic cell population increased from 2.7 to 13.8 % due to ACC silencing (p < 0.05). Moreover, Bax expression increased, while Bcl-2 expression decreased upon ACC silencing. Transwell assay results indicate that ACC silencing caused marked decrease in the invasion of the SNU-1 cells and downregulation of the expressions of MMP-2 and MMP-9 (p < 0.05). Conclusion: ACC is likely to be an important therapeutic target for gastric cancer.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Shumin Zhang ◽  
Lianzhen Wang ◽  
Yuting Gao ◽  
Yanxia Fan ◽  
Gang Zhang ◽  
...  

Objective. This study is aimed at exploring the regulatory mechanism of 73HOXC-AS1 overexpression plasmid-activated Wntβ-catenin classic signaling pathway and eukaryotic initiation factor 4A (eIF4AIII) expression increased by lentivirus-eIF4AIII-RNAi (44682-1) (LV-eIF4AIII-RNAi (44682-1)). Methods. Focusing on the occurrence and progression of gastric cancer, the human gastric cancer cell line BGC823 (University Experimental Center) was taken as the research object and was transfected after subculture. According to the different ways of transfection, the cells were divided into the P1 group (LV-eIF4AIII-RNAi (44682-1) overexpressed plasmid), the P2 group (pcDNA-HOXC-AS1 overexpressed plasmid), the P3 group (LV-eIF4AIII-RNAi (44682-1) + pcDNA-HOXC-AS1), and the P4 group (no transfection, control group). Cell proliferation was detected by CCK-8 (Cell Counting Kit-8) assay, Western blotting was adopted to detect Wnt3a and P-GSK3β proteins, Transwell assay was adopted to detect the ability of cell migration and invasion, and cell cycle and apoptosis were detected by flow cytometry. Results. The results show that the protein expression levels of Wnt3a and P-GSK3β (glycogen synthase kinase-3β) in the P1 and P4 groups were lower than those in the P2 and P3 groups ( P < 0.05 ). The cell activity and clone number of BGC823 in the P3 group were higher than those in the P1, P2, and P4 groups ( P < 0.05 ). The apoptosis rate of BGC823 cells in the P3 group was significantly higher than those in the P1, P2, and P4 groups ( P < 0.05 ). The proportion of BGC823 cells in the P3 group at the S phase was significantly higher than those in the P1, P2, and P4 groups, while the proportion in the G2 phase was significantly lower than those in the P1, P2, and P4 groups ( P < 0.05 ). The number of migrating and invading BGC823 cells in the P3 group was significantly higher than those in the P1, P2, and P4 groups, while the number of migrating BGC823 cells in the P4 group was significantly lower than those in the P1 and P2 groups ( P < 0.05 ). Conclusion. The 73HOXC-AS1 overexpression plasmid-activated Wntβ-catenin classic signaling pathway and eIF4AIII expression increased by LV-eIF4AIII-RNAi (44682-1) could act together on BGC823 cells to improve cell proliferation activity, migration, and invasion; inhibit cell apoptosis; and prevent cells from entering the S phase.


Sign in / Sign up

Export Citation Format

Share Document