scholarly journals Super-large-scale flow visualization using natural snowfall for the study of utility-scale wind turbine flows

Author(s):  
Aliza Abraham ◽  
Jiarong Hong

With the rapid growth of wind turbine installation in recent decades, fundamental physical understanding of the flow around wind turbines and farms is becoming increasingly critical for further efficiency increases. However, the effort to develop this understanding is hindered by the significant challenges involved in modelling such a complex dynamic system with a wide range of relevant scales (blade boundary layer thickness at ∼ 1 mm to atmospheric scales at ∼ 1 km). Additionally, conventional methods used to measure air flow around wind turbines in the field (e.g., lidar) are limited by low spatio-temporal resolutions.

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2287
Author(s):  
Kaina Qin ◽  
Shanshan Wang ◽  
Zhongjian Kang

With the rapid increase in the proportion of the installed wind power capacity in the total grid capacity, the state has put forward higher and higher requirements for wind power integration into the grid, among which the most difficult requirement is the zero-voltage ride through (ZVRT) capability of the wind turbine. When the voltage drops deeply, a series of transient processes, such as serious overvoltage, overcurrent, or speed rise, will occur in the motor, which will seriously endanger the safe operation of the wind turbine itself and its control system, and cause large-scale off-grid accident of wind generator. Therefore, it is of great significance to improve the uninterrupted operation ability of the wind turbine. Doubly fed induction generator (DFIG) can achieve the best wind energy tracking control in a wide range of wind speed and has the advantage of flexible power regulation. It is widely used at present, but it is sensitive to the grid voltage. In the current study, the DFIG is taken as the research object. The transient process of the DFIG during a fault is analyzed in detail. The mechanism of the rotor overcurrent and DC bus overvoltage of the DFIG during fault is studied. Additionally, the simulation model is built in DIgSILENT. The active crowbar hardware protection circuit is put into the rotor side of the wind turbine, and the extended state observer and terminal sliding mode control are added to the grid side converter control. Through the cooperative control technology, the rotor overcurrent and DC bus overvoltage can be suppressed to realize the zero-voltage ride-through of the doubly fed wind turbine, and ensure the safe and stable operation of the wind farm. Finally, the simulation results are presented to verify the theoretical analysis and the proposed control strategy.


Author(s):  
I. Janajreh ◽  
C. Ghenai

Large scale wind turbines and wind farms continue to evolve mounting 94.1GW of the electrical grid capacity in 2007 and expected to reach 160.0GW in 2010 according to World Wind Energy Association. They commence to play a vital role in the quest for renewable and sustainable energy. They are impressive structures of human responsiveness to, and awareness of, the depleting fossil fuel resources. Early generation wind turbines (windmills) were used as kinetic energy transformers and today generate 1/5 of the Denmark’s electricity and planned to double the current German grid capacity by reaching 12.5% by year 2010. Wind energy is plentiful (72 TW is estimated to be commercially viable) and clean while their intensive capital costs and maintenance fees still bar their widespread deployment in the developing world. Additionally, there are technological challenges in the rotor operating characteristics, fatigue load, and noise in meeting reliability and safety standards. Newer inventions, e.g., downstream wind turbines and flapping rotor blades, are sought to absorb a larger portion of the cost attributable to unrestrained lower cost yaw mechanisms, reduction in the moving parts, and noise reduction thereby reducing maintenance. In this work, numerical analysis of the downstream wind turbine blade is conducted. In particular, the interaction between the tower and the rotor passage is investigated. Circular cross sectional tower and aerofoil shapes are considered in a staggered configuration and under cross-stream motion. The resulting blade static pressure and aerodynamic forces are investigated at different incident wind angles and wind speeds. Comparison of the flow field results against the conventional upstream wind turbine is also conducted. The wind flow is considered to be transient, incompressible, viscous Navier-Stokes and turbulent. The k-ε model is utilized as the turbulence closure. The passage of the rotor blade is governed by ALE and is represented numerically as a sliding mesh against the upstream fixed tower domain. Both the blade and tower cross sections are padded with a boundary layer mesh to accurately capture the viscous forces while several levels of refinement were implemented throughout the domain to assess and avoid the mesh dependence.


Author(s):  
Neil Kelley ◽  
Maureen Hand ◽  
Scott Larwood ◽  
Ed McKenna

The accurate numerical dynamic simulation of new large-scale wind turbine designs operating over a wide range of inflow environments is critical because it is usually impractical to test prototypes in a variety of locations. Large turbines operate in a region of the atmospheric boundary layer that currently may not be adequately simulated by present turbulence codes. In this paper, we discuss the development and use of a 42-m (137-ft) planar array of five, high-resolution sonic anemometers upwind of a 600-kW wind turbine at the National Wind Technology Center (NWTC). The objective of this experiment is to obtain simultaneously collected turbulence information from the inflow array and the corresponding structural response of the turbine. The turbulence information will be used for comparison with that predicted by currently available codes and establish any systematic differences. These results will be used to improve the performance of the turbulence simulations. The sensitivities of key elements of the turbine aeroelastic and structural response to a range of turbulence-scaling parameters will be established for comparisons with other turbines and operating environments. In this paper, we present an overview of the experiment, and offer examples of two observed cases of inflow characteristics and turbine response collected under daytime and nighttime conditions, and compare their turbulence properties with predictions.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2741 ◽  
Author(s):  
George Lavidas ◽  
Vengatesan Venugopal

At autonomous electricity grids Renewable Energy (RE) contributes significantly to energy production. Offshore resources benefit from higher energy density, smaller visual impacts, and higher availability levels. Offshore locations at the West of Crete obtain wind availability ≈80%, combining this with the installation potential for large scale modern wind turbines (rated power) then expected annual benefits are immense. Temporal variability of production is a limiting factor for wider adaptation of large offshore farms. To this end multi-generation with wave energy can alleviate issues of non-generation for wind. Spatio-temporal correlation of wind and wave energy production exhibit that wind and wave hybrid stations can contribute significant amounts of clean energy, while at the same time reducing spatial constrains and public acceptance issues. Offshore technologies can be combined as co-located or not, altering contribution profiles of wave energy to non-operating wind turbine production. In this study a co-located option contributes up to 626 h per annum, while a non co-located solution is found to complement over 4000 h of a non-operative wind turbine. Findings indicate the opportunities associated not only in terms of capital expenditure reduction, but also in the ever important issue of renewable variability and grid stability.


2011 ◽  
Vol 1 (32) ◽  
pp. 65
Author(s):  
Thomas Lykke Andersen ◽  
Peter Frigaard ◽  
Michael R Rasmussen ◽  
Luca Martinelli

The present paper deals with loads on wind turbine access platforms. The many planned new wind turbine parks together with the observed damages on platforms in several existing parks make the topic very important. The paper gives an overview of recently developed design formulae for different types of entrance platforms. Moreover, the paper present new results on loads on grates based on both drag coefficient measurements and preliminary results on slamming from large scale tests. As expected both investigations show that platforms with grates give a significant reduction in the loads compared to closed plate platforms. The grate multiplication factor, defined as the peak load on the grate platform relative to the peak load on a closed plate platform was found approximately equal to the solidity of the grate.


2018 ◽  
Vol 856 ◽  
Author(s):  
M. Borgnino ◽  
G. Boffetta ◽  
F. De Lillo ◽  
M. Cencini

We study the dynamics and the statistics of dilute suspensions of gyrotactic swimmers, a model for many aquatic motile microorganisms. By means of extensive numerical simulations of the Navier–Stokes equations at different Reynolds numbers, we investigate preferential sampling and small-scale clustering as a function of the swimming (stability and speed) and shape parameters, considering in particular the limits of spherical and rod-like particles. While spherical swimmers preferentially sample local downwelling flow, for elongated swimmers we observe a transition from downwelling to upwelling regions at sufficiently high swimming speed. The spatial distribution of both spherical and elongated swimmers is found to be fractal at small scales in a wide range of swimming parameters. The direct comparison between the different shapes shows that spherical swimmers are more clusterized at small stability and speed numbers, while for large values of the parameters elongated cells concentrate more. The relevance of our results for phytoplankton swimming in the ocean is briefly discussed.


Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3396 ◽  
Author(s):  
Mingzhu Tang ◽  
Wei Chen ◽  
Qi Zhao ◽  
Huawei Wu ◽  
Wen Long ◽  
...  

Fault diagnosis and forecasting contribute significantly to the reduction of operating and maintenance associated costs, as well as to improve the resilience of wind turbine systems. Different from the existing fault diagnosis approaches using monitored vibration and acoustic data from the auxiliary equipment, this research presents a novel fault diagnosis and forecasting approach underpinned by a support vector regression model using data obtained by the supervisory control and data acquisition system (SCADA) of wind turbines (WT). To operate, the extraction of fault diagnosis features is conducted by measuring SCADA parameters. After that, confidence intervals are set up to guide the fault diagnosis implemented by the support vector regression (SVR) model. With the employment of confidence intervals as the performance indicators, an SVR-based fault detecting approach is then developed. Based on the WT SCADA data and the SVR model, a fault diagnosis strategy for large-scale doubly-fed wind turbine systems is investigated. A case study including a one-year monitoring SCADA data collected from a wind farm in Southern China is employed to validate the proposed methodology and demonstrate how it works. Results indicate that the proposed strategy can support the troubleshooting of wind turbine systems with high precision and effective response.


Author(s):  
D. Holst ◽  
A. B. Bach ◽  
C. N. Nayeri ◽  
C. O. Paschereit ◽  
G. Pechlivanoglou

The results of stereo Particle-Image-Velocimetry measurements are presented in this paper to gain further insight into the wake of a finite width Gurney flap. It is attached to an FX 63-137 airfoil which is known for a very good performance at low Reynolds numbers and is therefore used for small wind turbines and is most appropriate for tests in the low speed wind tunnel presented in this study. The Gurney flaps are a promising concept for load control on wind turbines but can have adverse side effects, e.g. shedding of additional vortices. The investigation focuses on frequencies and velocity distributions in the wake as well as on the structure of the induced tip vortices. Phase averaged velocity fields are derived of a Proper-Orthogonal-Decomposition based on the stereo PIV measurements. Additional hot-wire measurements were conducted to analyze the fluctuations downstream of the finite width Gurney flaps. Experiments indicate a general tip vortex structure that is independent from flap length but altered by the periodic shedding downstream of the flap. The influence of Gurney flaps on a small wind turbine is investigated by simulating a small 40 kW turbine in Q-Blade. They can serve as power control without the need of an active pitch system and the starting performance is additionally improved. The application of Gurney flaps imply tonal frequencies in the wake of the blade. Simulation results are used to estimate the resulting frequencies. However, the solution of Gurney flaps is a good candidate for large scale wind turbine implementation as well. A FAST simulation of the NREL 5MW turbine is used to generate realistic time series of the lift. The estimations of control capabilities predict a reduction in the standard deviation of the lift of up to 65%. Therefore finite width Gurney flaps are promising to extend the lifetime of future wind turbines.


Author(s):  
Hideyuki Suzuki ◽  
Yu Kitahara ◽  
Yukinari Fukumoto

A wide range of platform concepts have been investigated for a floating wind turbine. So far analysis and design of motion characteristics of the platform is main research concern. One key research area less focused is floating platform related risk. If the wind energy would be one of the major sources of electric power supply, wind farms which are comprised of large number of floating wind turbines must be deployed in the ocean. Wind turbines are relatively closely arranged in a wind farm. In such an arrangement, a wind turbine accidentally started drifting will have some possibility to collide with floater and moorings of neighboring moored floating wind turbines, and might initiate another drift which might cause progressive drifting of wind turbines. In the previous report, a scenario of progressive drifting of wind turbines was investigated and associated risk was formulated. Quantitative risk of several arrangements of wind farm was estimated. Effects of arrangement of wind turbines in a wind farm and safety factor used in the design of moorings is discussed. Probability of initial drift was evaluated analyzing past records of accidents and design of mooring. In this research, strength of mooring system was modeled more precisely and probabilistic model was developed considering aged deterioration. Risk of progressive drifting was evaluated and safety factor required to realize a acceptable risk of a wind farm was discussed.


2018 ◽  
Vol 8 (9) ◽  
pp. 1668 ◽  
Author(s):  
Jianghai Wu ◽  
Tongguang Wang ◽  
Long Wang ◽  
Ning Zhao

This article presents a framework to integrate and optimize the design of large-scale wind turbines. Annual energy production, load analysis, the structural design of components and the wind farm operation model are coupled to perform a system-level nonlinear optimization. As well as the commonly used design objective levelized cost of energy (LCoE), key metrics of engineering economics such as net present value (NPV), internal rate of return (IRR) and the discounted payback time (DPT) are calculated and used as design objectives, respectively. The results show that IRR and DPT have the same effect as LCoE since they all lead to minimization of the ratio of the capital expenditure to the energy production. Meanwhile, the optimization for NPV tends to maximize the margin between incomes and costs. These two types of economic metrics provide the minimal blade length and maximal blade length of an optimal blade for a target wind turbine at a given wind farm. The turbine properties with respect to the blade length and tower height are also examined. The blade obtained with economic optimization objectives has a much larger relative thickness and smaller chord distributions than that obtained for high aerodynamic performance design. Furthermore, the use of cost control objectives in optimization is crucial in improving the economic efficiency of wind turbines and sacrificing some aerodynamic performance can bring significant reductions in design loads and turbine costs.


Sign in / Sign up

Export Citation Format

Share Document