scholarly journals PIV measurements in a turbulent boundary layer overlying a spanwise heterogeneous roughness

Author(s):  
Rongnan Yao ◽  
Kenneth Christensen

In nature and engineering applications, wall-bounded flow often encounter a heterogeneous surface condition, such as the atmosphere boundary layer at the urban boundary and flow over riveted aircraft surfaces. In a particular scenario, when the surface heterogeneity is predominantly in the spanwise direction of the flow, this roughness heterogeneity can generate secondary flow in cross flow plane which is very different from smooth-wall or homogeneous rough-wall boundary layers.

2009 ◽  
Vol 623 ◽  
pp. 27-58 ◽  
Author(s):  
OLA LÖGDBERG ◽  
JENS H. M. FRANSSON ◽  
P. HENRIK ALFREDSSON

In this experimental study both smoke visualization and three-component hot-wire measurements have been performed in order to characterize the streamwise evolution of longitudinal counter-rotating vortices in a turbulent boundary layer. The vortices were generated by means of vortex generators (VGs) in different configurations. Both single pairs and arrays in a natural setting as well as in yaw have been considered. Moreover three different vortex blade heights h, with the spacing d and the distance to the neighbouring vortex pair D for the array configuration, were studied keeping the same d/h and D/h ratios. It is shown that the vortex core paths scale with h in the streamwise direction and with D and h in the spanwise and wall-normal directions, respectively. A new peculiar ‘hooklike’ vortex core motion, seen in the cross-flow plane, has been identified in the far region, starting around 200h and 50h for the pair and the array configuration, respectively. This behaviour is explained in the paper. Furthermore the experimental data indicate that the vortex paths asymptote to a prescribed location in the cross-flow plane, which first was stated as a hypothesis and later verified. This observation goes against previously reported numerical results based on inviscid theory. An account for the important viscous effects is taken in a pseudo-viscous vortex model which is able to capture the streamwise core evolution throughout the measurement region down to 450h. Finally, the effect of yawing is reported, and it is shown that spanwise-averaged quantities such as the shape factor and the circulation are hardly perceptible. However, the evolution of the vortex cores are different both between the pair and the array configuration and in the natural setting versus the case with yaw. From a general point of view the present paper reports on fundamental results concerning the vortex evolution in a fully developed turbulent boundary layer.


1977 ◽  
Vol 82 (3) ◽  
pp. 507-528 ◽  
Author(s):  
Hugh W. Coleman ◽  
Robert J. Moffat ◽  
William M. Kays

The behaviour of a fully rough turbulent boundary layer subjected to favourable pressure gradients both with and without blowing was investigated experimentally using a porous test surface composed of densely packed spheres of uniform size. Measurements of profiles of mean velocity and the components of the Reynolds-stress tensor are reported for both unblown and blown layers. Skin-friction coefficients were determined from measurements of the Reynolds shear stress and mean velocity.An appropriate acceleration parameterKrfor fully rough layers is defined which is dependent on a characteristic roughness dimension but independent of molecular viscosity. For a constant blowing fractionFgreater than or equal to zero, the fully rough turbulent boundary layer reaches an equilibrium state whenKris held constant. Profiles of the mean velocity and the components of the Reynolds-stress tensor are then similar in the flow direction and the skin-friction coefficient, momentum thickness, boundary-layer shape factor and the Clauser shape factor and pressure-gradient parameter all become constant.Acceleration of a fully rough layer decreases the normalized turbulent kinetic energy and makes the turbulence field much less isotropic in the inner region (forFequal to zero) compared with zero-pressure-gradient fully rough layers. The values of the Reynolds-shear-stress correlation coefficients, however, are unaffected by acceleration or blowing and are identical with values previously reported for smooth-wall and zero-pressure-gradient rough-wall flows. Increasing values of the roughness Reynolds number with acceleration indicate that the fully rough layer does not tend towards the transitionally rough or smooth-wall state when accelerated.


2018 ◽  
Vol 18 (1) ◽  
pp. 3-48
Author(s):  
LMBC Campos ◽  
C Legendre

In this study, the propagation of waves in a two-dimensional parallel-sided nozzle is considered allowing for the combination of: (a) distinct impedances of the upper and lower walls; (b) upper and lower boundary layers with different thicknesses with linear shear velocity profiles matched to a uniform core flow; and (c) a uniform cross-flow as a bias flow out of one and into the other porous acoustic liner. The model involves an “acoustic triple deck” consisting of third-order non-sinusoidal non-plane acoustic-shear waves in the upper and lower boundary layers coupled to convected plane sinusoidal acoustic waves in the uniform core flow. The acoustic modes are determined from a dispersion relation corresponding to the vanishing of an 8 × 8 matrix determinant, and the waveforms are combinations of two acoustic and two sets of three acoustic-shear waves. The eigenvalues are calculated and the waveforms are plotted for a wide range of values of the four parameters of the problem, namely: (i/ii) the core and bias flow Mach numbers; (iii) the impedances at the two walls; and (iv) the thicknesses of the two boundary layers relative to each other and the core flow. It is shown that all three main physical phenomena considered in this model can have a significant effect on the wave field: (c) a bias or cross-flow even with small Mach number [Formula: see text] relative to the mean flow Mach number [Formula: see text] can modify the waveforms; (b) the possibly dissimilar impedances of the lined walls can absorb (or amplify) waves more or less depending on the reactance and inductance; (a) the exchange of the wave energy with the shear flow is also important, since for the same stream velocity, a thin boundary layer has higher vorticity, and lower vorticity corresponds to a thicker boundary layer. The combination of all these three effects (a–c) leads to a large set of different waveforms in the duct that are plotted for a wide range of the parameters (i–iv) of the problem.


1966 ◽  
Vol 8 (4) ◽  
pp. 426-436 ◽  
Author(s):  
A. D. Carmichael ◽  
G. N. Pustintsev

Methods of predicting the growth of turbulent boundary layers in conical diffusers using the kinetic-energy deficit equation were developed. Three different forms of auxiliary equations were used. Comparison between the measured and predicted results showed that there was fair agreement although there was a tendency to underestimate the predicted momentum thickness and over-estimate the predicted shape factor.


2011 ◽  
Vol 674 ◽  
pp. 5-42 ◽  
Author(s):  
CHRISTIAN S. J. MAYER ◽  
DOMINIC A. VON TERZI ◽  
HERMANN F. FASEL

A pair of oblique waves at low amplitudes is introduced in a supersonic flat-plate boundary layer at Mach 3. Its downstream development and the concomitant process of laminar to turbulent transition is then investigated numerically using linear-stability theory, parabolized stability equations and direct numerical simulations (DNS). In the present paper, the linear regime is studied first in great detail. The focus of the second part is the early and late nonlinear regimes. It is shown how the disturbance wave spectrum is filled up by nonlinear interactions and which flow structures arise and how these structures locally break down to small scales. Finally, the study answers the question whether a fully developed turbulent boundary layer can be reached by oblique breakdown. It is shown that the skin friction develops such as is typical of transitional and turbulent boundary layers. Initially, the skin friction coefficient increases in the streamwise direction in the transitional region and finally decays when the early turbulent state is reached. Downstream of the maximum in the skin friction, the flow loses its periodicity in time and possesses characteristic mean-flow and spectral properties of a turbulent boundary layer. The DNS data clearly demonstrate that oblique breakdown can lead to a fully developed turbulent boundary layer and therefore it is a relevant mechanism for transition in two-dimensional supersonic boundary layers.


1969 ◽  
Vol 73 (698) ◽  
pp. 143-147 ◽  
Author(s):  
M. K. Bull

Although a numerical solution of the turbulent boundary-layer equations has been achieved by Mellor and Gibson for equilibrium layers, there are many occasions on which it is desirable to have closed-form expressions representing the velocity profile. Probably the best known and most widely used representation of both equilibrium and non-equilibrium layers is that of Coles. However, when velocity profiles are examined in detail it becomes apparent that considerable care is necessary in applying Coles's formulation, and it seems to be worthwhile to draw attention to some of the errors and inconsistencies which may arise if care is not exercised. This will be done mainly by the consideration of experimental data. In the work on constant pressure layers, emphasis tends to fall heavily on the author's own data previously reported in ref. 1, because the details of the measurements are readily available; other experimental work is introduced where the required values can be obtained easily from the published papers.


Author(s):  
A. D. Carmichael

A relatively simple method for predicting some of the characteristics of three-dimensional turbulent boundary layers is presented. The basic assumption of the method is that the cross-flow is small. An empirical correlation of a basic shape factor of the cross-flow boundary layer against the streamwise shape factor H is provided. This correlation, together with data for the streamwise boundary layer, is used to predict the cross flow. The solution is very sensitive to the accuracy of the streamwise boundary-layer data which is predicted by conventional two-dimensional methods.


AIAA Journal ◽  
1979 ◽  
Vol 17 (8) ◽  
pp. 907-910 ◽  
Author(s):  
Phillip M. Ligrani ◽  
Robert J. Moffat

1999 ◽  
Vol 395 ◽  
pp. 271-294 ◽  
Author(s):  
L. DJENIDI ◽  
R. ELAVARASAN ◽  
R. A. ANTONIA

Laser-induced uorescence (LIF) and laser Doppler velocimetry (LDV) are used to explore the structure of a turbulent boundary layer over a wall made up of two-dimensional square cavities placed transversely to the flow direction. There is strong evidence of occurrence of outflows of fluid from the cavities as well as inflows into the cavities. These events occur in a pseudo-random manner and are closely associated with the passage of near-wall quasi-streamwise vortices. These vortices and the associated low-speed streaks are similar to those found in a turbulent boundary layer over a smooth wall. It is conjectured that outflows play an important role in maintaining the level of turbulent energy in the layer and enhancing the approach towards self-preservation. Relative to a smooth wall layer, there is a discernible increase in the magnitudes of all the Reynolds stresses and a smaller streamwise variation of the local skin friction coefficient. A local maximum in the Reynolds shear stress is observed in the shear layers over the cavities.


Sign in / Sign up

Export Citation Format

Share Document