scholarly journals Mechanical and tribological properties of composites based on polytetrafluoroethylene and modified fillers

2019 ◽  
Author(s):  
T.A. Isakova
2021 ◽  
pp. 36-40
Author(s):  
F.F. Yusubov

Tribotechnical indicators of environmentally friendly frictional composite materials with phenol-formaldehyde matrix are studied. Friction tests were carried out on a MMW-1 vertical tribometer according to the pin-on-disk scheme. Keywords: brake pads, composites, friction and wear, plasticizers, degradation, porosity. [email protected]


2018 ◽  
Vol 31 (1) ◽  
pp. 43-50 ◽  
Author(s):  
Yingshuang Shang ◽  
Xian Wu ◽  
Yifan Liu ◽  
Zilong Jiang ◽  
Zhaoyang Wang ◽  
...  

The high strength of multiwalled carbon nanotubes (MWCNTs) indicates promising properties for industry applications to reduce frictional coefficient and improve mechanical properties, yet few researches have referred to its structural morphology on the thermal, mechanical, and tribological properties of composites. In this work, three different lengths of MWCNTs were used to prepare polyether ether ketone (PEEK) composites and investigate the effect of structural morphology of MWCNTs on the thermal, mechanical, and tribological properties of composites. Different lengths of MWCNTs endowed PEEK composites with different thermal, mechanical, and tribological properties. On thermal and mechanical properties, the incorporation of 10–30 μm length of MWCNTs increased more the effectiveness on the crystallization rate, showing a higher crystallization temperature and the best mechanical properties of the PEEK composites. On tribological properties, approximately 50 μm MWCNTs can effectively decrease adhesive wear, which is a benefit of forming a thin transfer film, thereby effectively decreasing the coefficient of friction and improving the wear resistance.


2021 ◽  
Author(s):  
Mengyao Ning ◽  
Kangshuai Li ◽  
Chengqi Yan ◽  
Guangfei Wang ◽  
Zehua Xu ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1194
Author(s):  
Philipp Kiryukhantsev-Korneev ◽  
Alina Sytchenko ◽  
Yuriy Kaplanskii ◽  
Alexander Sheveyko ◽  
Stepan Vorotilo ◽  
...  

The coatings ZrB2 and Zr-B-N were deposited by magnetron sputtering of ZrB2 target in Ar and Ar–15%N2 atmospheres. The structure and properties of the coatings were investigated via scanning and transmission electron microscopy, energy dispersion analysis, optical profilometry, glowing discharge optical emission spectroscopy and X-ray diffraction analysis. Mechanical and tribological properties of the coatings were investigated using nanoindentation, “pin-on-disc” tribological testing and “ball-on-plate” impact testing. Free corrosion potential and corrosion current density were measured by electrochemical testing in 1N H2SO4 and 3.5%NaCl solutions. The oxidation resistance of the coatings was investigated in the 600–800 °С temperature interval. The coatings deposited in Ar contained 4–11 nm grains of the h-ZrB2 phase along with free boron. Nitrogen-containing coatings consisted of finer crystals (1–4 nm) of h-ZrB2, separated by interlayers of amorphous a-BN. Both types of coatings featured hardness of 22–23 GPa; however, the introduction of nitrogen decreased the coating’s elastic modulus from 342 to 266 GPa and increased the elastic recovery from 62 to 72%, which enhanced the wear resistance of the coatings. N-doped coatings demonstrated a relatively low friction coefficient of 0.4 and a specific wear rate of ~1.3 × 10−6 mm3N−1m−1. Electrochemical investigations revealed that the introduction of nitrogen into the coatings resulted in the decrease of corrosion current density in 3.5% NaCl and 1N H2SO4 solution up to 3.5 and 5 times, correspondingly. The superior corrosion resistance of Zr-В-N coatings was related to the finer grains size and increased volume of the BN phase. The samples ZrB2 and Zr-B-N resisted oxidation at 600 °C. N-free coatings resisted oxidation (up to 800 °С) and the diffusion of metallic elements from the substrate better. In contrast, Zr-B-N coatings experienced total oxidation and formed loose oxide layers, which could be easily removed from the substrate.


Sign in / Sign up

Export Citation Format

Share Document