scholarly journals Prediction of Hotspots in Riau Province, Indonesia Using the Autoregressive Integrated Moving Average (ARIMA) Model

2020 ◽  
pp. 101-110
Author(s):  
Evizal Abdul Kadir ◽  
Nur Ezzati Dayana ◽  
Sri Listia Rosa ◽  
Mahmod Othman ◽  
Rizauddin Saian

Various forms of disasters occur worldwide, one of which is fire. Indonesia has been suffering from frequent land and forest fires. These events are not a new phenomenon and seem to be an annual tradition, especially in the dry season. This nation was most affected by an excessively disastrous forest fire in 2015. The misfortunes suffered were massive and resulted in land and forest damage that may have great economic and environmental costs. One solution to reduce the impacts of such events is to predict the emergence of hotspots. Therefore, in this work, a modeling method using time series produced by the Box-Jenkins' Autoregressive Integrated Moving Average (ARIMA) model was used to predict the appearance of hotspots. Since the forecasting system does not expect any detailed form to be predicted in terms of the time series of historical data, the data demonstrated in the proposed model were different from data from other models used for prediction. The study was conducted based on monthly hotspot occurrence data from January 2014 through June 2019 in Riau Province, Indonesia. The data were downloaded from the collection of the "LAPAN-MODIS-Catalog". Based on the results shown, the Autoregressive Integrated Moving Average (ARIMA) model (2,1,2) produced good predictions based on its lowest value of Mean Squared Error (MSE), 9540.088. Moreover, the proposed model has produced highly accurate forecasts of hotspots for time periods of up to five months using the fitting model of ARIMA (2,1,2), and the values forecasted for 5 months ahead were 25, 31, 26, 30 and 27.

2008 ◽  
Vol 24 (4) ◽  
pp. 988-1009 ◽  
Author(s):  
Tucker McElroy

The paper provides general matrix formulas for minimum mean squared error signal extraction for a finitely sampled time series whose signal and noise components are nonstationary autoregressive integrated moving average processes. These formulas are quite practical; in addition to being simple to implement on a computer, they make it possible to easily derive important general properties of the signal extraction filters. We also extend these formulas to estimates of future values of the unobserved signal, and we show how this result combines signal extraction and forecasting.


Author(s):  
Haviluddin Haviluddin ◽  
Ahmad Jawahir

Based on a combination of an autoregressive integrated moving average (ARIMA) and a radial basis function neural network (RBFNN), a time-series forecasting model is proposed. The proposed model has examined using simulated time series data of tourist arrival to Indonesia recently published by BPS Indonesia. The results demonstrate that the proposed RBFNN is more competent in modelling and forecasting time series than an ARIMA model which is indicated by mean square error (MSE) values. Based on the results obtained, RBFNN model is recommended as an alternative to existing method because it has a simple structure and can produce reasonable forecasts.


2021 ◽  
Author(s):  
Emilly Pereira Alves ◽  
Joao Fausto Lorenzato Oliveira ◽  
Manoel Henrique da Nóbrega Marinho ◽  
Francisco Madeiro

In the forecasting time series field, the combination of techniques to aid in predicting different patterns has been the subject of several studies. Hybrid models have been widely applied in this scenario, where the vast majority of series are composed of linear and nonlinear patterns. The Autoregressive Integrated Moving Average (ARIMA) presents satisfactory results in a linear pattern prediction but can not capture nonlinear ones. In dealing with nonlinear patterns, the Support Vector Regression (SVR) has shown promising results. In order to map both patterns, an optimized nonlinear combination model based on SVR and ARIMA is proposed. The main difference in comparison with other works is the use of an interactive Particle Swarm Optimization (PSO) to increase the prediction performance. To the experimental setup, six well-known datasets of the literature is used. The performance is assessed by the metrics Mean Squared Error (MSE), Mean Absolute Percentage Error (MAPE), and Mean Absolute Error (MAE). The results show the proposed system attains better outcomes when compared to the other tested techniques, for most of the used data.


2021 ◽  
pp. 1-13
Author(s):  
Muhammad Rafi ◽  
Mohammad Taha Wahab ◽  
Muhammad Bilal Khan ◽  
Hani Raza

Automatic Teller Machine (ATM) are still largely used to dispense cash to the customers. ATM cash replenishment is a process of refilling ATM machine with a specific amount of cash. Due to vacillating users demands and seasonal patterns, it is a very challenging problem for the financial institutions to keep the optimal amount of cash for each ATM. In this paper, we present a time series model based on Auto Regressive Integrated Moving Average (ARIMA) technique called Time Series ARIMA Model for ATM (TASM4ATM). This study used ATM back-end refilling historical data from 6 different financial organizations in Pakistan. There are 2040 distinct ATMs and 18 month of replenishment data from these ATMs are used to train the proposed model. The model is compared with the state-of- the-art models like Recurrent Neural Network (RNN) and Amazon’s DeepAR model. Two approaches are used for forecasting (i) Single ATM and (ii) clusters of ATMs (In which ATMs are clustered with similar cash-demands). The Mean Absolute Percentage Error (MAPE) and Symmetric Mean Absolute Percentage Error (SMAPE) are used to evaluate the models. The suggested model produces far better forecasting as compared to the models in comparison and produced an average of 7.86/7.99 values for MAPE/SMAPE errors on individual ATMs and average of 6.57/6.64 values for MAPE/SMAPE errors on clusters of ATMs.


2019 ◽  
Vol 4 (3) ◽  
pp. 58
Author(s):  
Lu Qin ◽  
Kyle Shanks ◽  
Glenn Allen Phillips ◽  
Daphne Bernard

The Autoregressive Integrated Moving Average model (ARIMA) is a popular time-series model used to predict future trends in economics, energy markets, and stock markets. It has not been widely applied to enrollment forecasting in higher education. The accuracy of the ARIMA model heavily relies on the length of time series. Researchers and practitioners often utilize the most recent - to -years of historical data to predict future enrollment; however, the accuracy of enrollment projection under different lengths of time series has never been investigated and compared. A simulation and an empirical study were conducted to thoroughly investigate the accuracy of ARIMA forecasting under four different lengths of time series. When the ARIMA model completely captured the historical changing trajectories, it provided the most accurate predictions of student enrollment with 20-years of historical data and had the lowest forecasting accuracy with the shortest time series. The results of this paper contribute as a reference to studies in the enrollment projection and time-series forecasting. It provides a practical impact on enrollment strategies, budges plans, and financial aid policies at colleges and institutions across countries.


2012 ◽  
Vol 588-589 ◽  
pp. 1466-1471 ◽  
Author(s):  
Jun Fang Li ◽  
Qun Zong

As one of the conventional statistical methods, the autoregressive integrated moving average (ARIMA) model has been one of the most widely used linear models in time series forecasting. However, the ARIMA model cannot easily capture the nonlinear patterns. Artificial neural network (ANN) can be utilized to construct more accurate forecasting model than ARIMA for nonlinear time series, but it is difficult to explain the meaning of the hidden layers of ANN and it does not produce a mathematical equation. In this study, by combining ARIMA with genetic programming (GP), a hybrid forecasting model will be used for elevator traffic flow time series which can improve the accuracy both the GP and the ARIMA forecasting models separately. At last, simulations are adopted to demonstrate the advantages of the proposed ARIMA-GP forecasting model.


Author(s):  
Debasis Mithiya ◽  
Lakshmikanta Datta ◽  
Kumarjit Mandal

Oilseeds have been the backbone of India’s agricultural economy since long. Oilseed crops play the second most important role in Indian agricultural economy, next to food grains, in terms of area and production. Oilseeds production in India has increased with time, however, the increasing demand for edible oils necessitated the imports in large quantities, leading to a substantial drain of foreign exchange. The need for addressing this deficit motivated a systematic study of the oilseeds economy to formulate appropriate strategies to bridge the demand-supply gap. In this study, an effort is made to forecast oilseeds production by using Autoregressive Integrated Moving Average (ARIMA) model, which is the most widely used model for forecasting time series. One of the main drawbacks of this model is the presumption of linearity. The Group Method of Data Handling (GMDH) model has also been applied for forecasting the oilseeds production because it contains nonlinear patterns. Both ARIMA and GMDH are mathematical models well-known for time series forecasting. The results obtained by the GMDH are compared with the results of ARIMA model. The comparison of modeling results shows that the GMDH model perform better than the ARIMA model in terms of mean absolute error (MAE), mean absolute percentage error (MAPE), and root mean square error (RMSE). The experimental results of both models indicate that the GMDH model is a powerful tool to handle the time series data and it provides a promising technique in time series forecasting methods.


2019 ◽  
Vol 13 (3) ◽  
pp. 135-144
Author(s):  
Sasmita Hayoto ◽  
Yopi Andry Lesnussa ◽  
Henry W. M. Patty ◽  
Ronald John Djami

The Autoregressive Integrated Moving Average (ARIMA) model is often used to forecast time series data. In the era of globalization, rapidly progressing times, one of them in the field of transportation. The aircraft is one of the transportation that the residents can use to support their activities, both in business and tourism. The objective of the research is to know the forecasting of the number of passengers of airplanes at the arrival gate of Pattimura Ambon International Airport using ARIMA Box-Jenkins method. The best model selection is ARIMA (0, 1, 3) because it has significant parameter value and MSE value is smaller.


Corona virus disease (COVID -19) has changed the world completely due to unavailability of its exact treatment. It has affected 215 countries in the world in which India is no exception where COVID patients are increasing exponentially since 15th of Feb. The objective of paper is to develop a model which can predict daily new cases in India. The autoregressive integrated moving average (ARIMA) models have been used for time series prediction. The daily data of new COVID-19 cases act as an exogenous variable in this framework. The daily data cover the sample period of 15th February, 2020 to 24th May, 2020. The time variable under study is a non-stationary series as 𝒚𝒕 is regressed with 𝒚𝒕−𝟏 and the coefficient is 1. The time series have clearly increasing trend. Results obtained revealed that the ARIMA model has a strong potential for short-term prediction. In PACF graph. Lag 1 and Lag 13 is significant. Regressed values implies Lag 1 and Lag 13 is significant in predicting the current values. The model predicted maximum COVID-19 cases in India at around 8000 during 5thJune to 20th June period. As per the model, the number of new cases shall start decreasing after 20th June in India only. The results will help governments to make necessary arrangements as per the estimated cases. The limitation of this model is that it is unable to predict jerks on either lower or upper side of daily new cases. So, in case of jerks re-estimation will be required.


2020 ◽  
Vol 35 (3) ◽  
pp. 959-976 ◽  
Author(s):  
Yuchuan Lai ◽  
David A. Dzombak

Abstract A data-driven approach for obtaining near-term (2–20 years) regional temperature and precipitation projections utilizing local historical observations was established in this study to facilitate civil and environmental engineering applications. Given the unique characteristics of temporal correlation and skewness exhibited in individual time series of temperature and precipitation variables, a statistical time series forecasting technique was developed based on the autoregressive integrated moving average (ARIMA) model. Annual projections obtained from the ARIMA model—depending on individual series—can be interpreted as an integration of the most recent observations and the long-term historical trend. In addition to annual temperature and precipitation forecasts, methods of estimating confidence intervals for different return periods and simulating future daily temperature and precipitation were developed to extend the applicability for use in engineering. Quantitative comparisons of annual temperature and precipitation forecasts developed from the ARIMA model and other common statistical techniques such as a linear trend method were performed. Results suggested that while the ARIMA model cannot outperform all other techniques for all evaluated climate indices, the ARIMA model in general provides more accurate projections—especially interval forecasts—and is more reliable than other common statistical techniques. With the use of the ARIMA-based statistical forecasting model, interpretable and reliable near-term, location-specific temperature and precipitation forecasts can be obtained for consideration of changing climate in civil and environmental engineering applications.


Sign in / Sign up

Export Citation Format

Share Document