scholarly journals Vestibular contribution to memory processing

Author(s):  
Abdollah Moossavi ◽  
Meymaneh Jafari

Background and Aim: The vestibular system contributes in the stabilization of the head and body, orientation, and gazing through the pro­cessing of sensory inputs. A wealth of evidence supports the involvement of vestibular informa­tion in higher functions, too.Methods: In this paper, we reviewed the pre­vious studies on the effect of the vestibular sys­tem on memory as one of the cognitive func­tions.Results: Clinical and laboratory findings indi­cate the association of vestibular inputs (besides postural control and oculomotor) with a variety of higher functions, especially memory func­tion. Because part of the memory function is determined by other cognitive processes i.e. att­ention capacity, emotional disturbances, and executive functions, the study of the effect of vestibular inputs on these functions provides a more accurate view of how the vestibular inputs affect memory performance.Conclusion: Although our current knowledge on vestibular-memory interaction is increasing, the exact involvement of vestibular signals in memory representations is still unclear and needs further studies to determine the theore­tical basis of vestibular involvement in memory processing.

2020 ◽  
Vol 21 (23) ◽  
pp. 9039
Author(s):  
Álvaro Fernández-Blanco ◽  
Mara Dierssen

Neurodevelopmental disorders arise from genetic and/or from environmental factors and are characterized by different degrees of intellectual disability. The mechanisms that govern important processes sustaining learning and memory, which are severely affected in intellectual disability, have classically been thought to be exclusively under neuronal control. However, this vision has recently evolved into a more integrative conception in which astroglia, rather than just acting as metabolic supply and structural anchoring for neurons, interact at distinct levels modulating neuronal communication and possibly also cognitive processes. Recently, genetic tools have made it possible to specifically manipulate astrocyte activity unraveling novel functions that involve astrocytes in memory function in the healthy brain. However, astrocyte manipulation has also underscored potential mechanisms by which dysfunctional astrocytes could contribute to memory deficits in several neurodevelopmental disorders revealing new pathogenic mechanisms in intellectual disability. Here, we review the current knowledge about astrocyte dysfunction that might contribute to learning and memory impairment in neurodevelopmental disorders, with special focus on Fragile X syndrome and Down syndrome.


2021 ◽  
Vol 11 (14) ◽  
pp. 6434
Author(s):  
Cecilia Hammar Wijkmark ◽  
Maria Monika Metallinou ◽  
Ilona Heldal

Due to the COVID-19 restrictions, on-site Incident Commander (IC) practical training and examinations in Sweden were canceled as of March 2020. The graduation of one IC class was, however, conducted through Remote Virtual Simulation (RVS), the first such examination to our current knowledge. This paper presents the necessary enablers for setting up RVS and its influence on cognitive aspects of assessing practical competences. Data were gathered through observations, questionnaires, and interviews from students and instructors, using action-case research methodology. The results show the potential of RVS for supporting higher cognitive processes, such as recognition, comprehension, problem solving, decision making, and allowed students to demonstrate whether they had achieved the required learning objectives. Other reported benefits were the value of not gathering people (imposed by the pandemic), experiencing new, challenging incident scenarios, increased motivation for applying RVS based training both for students and instructors, and reduced traveling (corresponding to 15,400 km for a class). While further research is needed for defining how to integrate RVS in practical training and assessment for IC education and for increased generalizability, this research pinpoints current benefits and limitations, in relation to the cognitive aspects and in comparison, to previous examination formats.


1988 ◽  
Vol 3 (S2) ◽  
pp. 131s-138s
Author(s):  
O.M. Wolkowltz ◽  
H. Weingartner

SummaryWhile it is generally assumed that pathological anxiety states are associated with impaired cognition, surprisingly few studies have formally tested this theory. This is in marked contrast to the study of cognition in depression, where specific cognitive deficits have been delineated. A conceptual framework for the study of cognition. which we have previously utilized in studying the psychobiology of cognitive failure, may facilitate the study of cognition in pathological anxiety States. We propose that memory is not a unitary process; rather, it is composed of several psychobiologically distinct components, which may be specifically disrupted or spared. This differentiated approach to the study of cognition permits the comparison of disease or drug effects on specific cognitive processes and may allow a mapping of individual processes onto specific psychobiological determinants. In this framework, change in cognitive performance may be related to alterations in “intrinsic” cognitive processes or noncognitive “intrinsic” processes. “Intrinsic” processes include the memory of specific biographical or contextually-related recent events (episodic memory) and the memory of previously acquired knowledge, language, procedures and rules (knowledge memory) Processes that require effort and cognitive capacity and those that can be performed more automatically may characterize “intrinsic” memory function. “Extrinsic” modulatory processes include mood, sensitivity to reinforcement,arousal/activation, and sensorimotor capabilities. Findings in patients with depression, Alzheimer's disease and Korsakoff's disease, as well as findings in individuals who have received benzodiazapines, anticholnergic medications, or corticosteroids highlight the utility of this framework and support the notion that these component processes of memory are psychobiologically distinct. Memory-testing paradigms based on this framework may further our knowledge of the specific cognitive alterations that are associated with States of pathological anxiety.


2003 ◽  
Vol 14 (3-4) ◽  
pp. 103-107 ◽  
Author(s):  
Tatia M. C. Lee ◽  
Crystal C. Y. Cheung ◽  
Esther Y. Y. Lau ◽  
Amanda Mak ◽  
Leonard S. W. Li

The case of a 67-year-old right-handed Chinese man with Central Pontine Myelinolysis [CPM] is described to illustrate the resulting cognitive and emotional disturbances. A comparison of the data in this report with that in published studies suggests that ethnicity does not seem to have much effect on the symptoms of CPM. Possible underlying neural-pathological mechanisms are discussed. This case further substantiates the speculation that the brainstem plays a role in higher cognitive processes and emotional regulation.


Author(s):  
Zahra Nadimi ◽  
Mansoureh Adel Ghahraman ◽  
Ghassem Mohammadkhani ◽  
Reza Hoseinabadi ◽  
Shohreh Jalaie ◽  
...  

Background and Aim: Vestibular system has several anatomical connections with cognitive regions of the brain. Vestibular disorders have negative effects on cognitive performance. Hearing-impaired patients, particularly cochlear implant users, have concomitant vestibular disor­ders. Previous studies have shown that attention assigned to postural control decreases while per­forming a cognitive task (dual task) in hearing-impaired children. Since the vestibular system and postural control performance develop around 15−16 years of age, the aim of this study was to compare postural control performance during dual task in adolescent boys with normal hearing and cochlear implant (CI) users with congenital hearing-impairment. Methods: Postural control was assessed in twenty 16−19 year old cochlear implant boys and 40 normal hearing peers with force plate. The main outcomes were displacement in posterior- anterior and medial-lateral planes, and mean speed with and without cognitive task and under on/off-device conditions. Caloric test was per­formed for CI users in order to examine the peri­pheral vestibular system. Results: Ninety-five percent of CI users showed caloric weakness. There were no significant diff­erences in postural control parameters between groups. All performances deteriorated in the foam pad condition compared to the hard surface in all groups. Total mean velocity significantly increased during dual task in normal hearing group and in CI users with off-device. Conclusion: Although CI users had apparent vestibular disorders, their postural control in both single and dual-task conditions was identical to the normal peers. These effects can be attributed to the vestibular compensation that takes place during growing. Keywords: Balance; postural control; dual task; congenital hearing loss; cochlear implant


2021 ◽  
Vol 11 (3) ◽  
pp. 189-198
Author(s):  
Soudabeh Raeisi ◽  
◽  
Seyed Kazem Mousavi Sadati ◽  
Mojtaba Azimian ◽  
◽  
...  

Purpose: Physicians report balance disorders and fatigue as the symptoms of Multiple Sclerosis (MS) disease. The present study compares the effect of transcranial Direct Current Stimulation (tDCS) and core stability training on the balance and disability of patients with MS. Methods: This is a pre-test, post-test experiment study. The statistical population included all patients with MS who reffered to Rofaydeh Rehabilitation Hospital in Tehran City, Iran, in the winter of 2019. A total of 30 male and female patients aged 27-70 years were selected through available and purposive sampling methods and then randomly divided into experimental and control groups (each group 15 persons). The initial measurements of the participants’ kinetic variables of postural control were carried out by the posturography device, and afterward, Kurtzke Expanded Disability Status Scale (EDSS) was employed to measure disability. The participants’ training included core stability training for 8 weeks (30-40 min, 3 sessions per week) with 20 min online cerebellar transcranial direct current stimulation, 2 sessions per week (The first and third sessions). Then, the research variables were measured again. Results: The results demonstrated the significant influence of cerebellar tDCS on the variables of postural control equilibrium in the second sensory condition (P<0.001), third sensory condition (P<0.001), fourth sensory condition (P<0.001), fifth sensory condition (P=0.034), and combine equilibrium (P<0.001). Besides, the cerebellar current stimulation enhanced the sensory performance of the experimental group in using the vestibular system input data (P<0.001) and vision (P<0.001), but it had no significant effect on the ability to use somatosensory input (P=0.203) and vision preference (P=0.343). This research also revealed that the cerebellar current stimulation decreased EDSS in MS patients (P=0.026). Conclusion: The cerebellar tDCS has a beneficial effect on balance, EDSS, and modified fatigue impact scale in MS patients. The study findings also indicate that the cerebellum, vestibular system, and visual system are related, and they have an impact on balance, and cerebellar stimulation can facilitate learning motor skills.


Author(s):  
Yu Jia ◽  
Zheng Chen ◽  
Jiangyang Lu ◽  
Liu Tingting ◽  
Zhou Liang ◽  
...  

The current knowledge base on circulating serum and plasma risk factors of the cognitive decline of degenerative Alzheimer’s Disease is linked to cholesterol homeostasis and lipoprotein disturbances (i.e., total cholesterol, 24S-hydroxy-cholesterol, lipoprotein(a), or apolipoprotein E. Lipoprotein lipase (LPL) is also expressed in the brain, with the highest levels found in the pyramidal cells of the hippocampus, suggesting a possible role for LPL in the regulation of cognitive function. Little is currently known, however, about the specific role of LPL in the brain. The authors of this chapter have generated an LPL-deficient mouse model that was rescued from neonatal lethality by somatic gene transfer. The levels of the presynaptic marker synaptophysin were reduced in the hippocampus while the levels of the post-synaptic marker PSD-95 remained unchanged in the LPL-deficient mice. The decreased frequency of mEPSC in LPL-deficient neurons indicated that the number of presynaptic vesicles was decreased, which was consistent with the decreases observed in the numbers of total vesicles and docking vesicles. These findings indicate that LPL plays an important role in learning and memory function, possibly by influencing presynaptic function.


2000 ◽  
Vol 12 (1-2) ◽  
pp. 53-67 ◽  
Author(s):  
Daniela Montaldi ◽  
Andrew R. Mayes

The last ten years have seen the development and expansion of an exciting new field of neuroscientific research; functional mapping of the human brain. Whilst many of the questions addressed by this area of research could be answered using SPECT, relatively few SPECT activation studies of this kind have been carried out. The present paper combines an evaluation of SPECT procedures used for neuroactivation studies, and their comparison with other imaging modalities (i.e., PET and fMRI), with a review of SPECT neuroactivation studies that yield information concerning normal brain function with a particular emphasis on the brain activations produced by memory processing. The paper aims to describe and counter common misunderstandings regarding potential limitations of the SPECT technique, to explain and illustrate which SPECT procedures best fulfill the requirements of a neuroactivation study, and how best to obtain information about normal brain function (whether using normal healthy subjects or patients) and finally to highlight SPECT’s potential future role in the functional mapping of the human brain.


Sign in / Sign up

Export Citation Format

Share Document