scholarly journals Molecular Identification of Free-Living Amoebae (Naegleria spp., Acanthamoeba spp. and Vermamoeba spp.) Isolated from Unim-proved Hot Springs, Guilan Province, Northern Iran

Author(s):  
Mohammad Hossein FEIZ HADDAD ◽  
Saeed KHOSHNOOD ◽  
Mohammad Reza MAHMOUDI ◽  
Habib HABIBPOUR ◽  
Selman A. ALI ◽  
...  

Background: This study was conducted to determine the presence and molecular identify of Acanthamoeba, Naegleria and Vermamoeba in unimproved hot springs. Methods: From Jul to Aug 2017, 54 water samples were collected from hot springs in different parts of the Guilan Province, North Iran. For the isolation of Acanthamoeba, Naegleria and Vermamoeba approximately 500 ml of the water samples were filtered through a cellulose nitrate membrane with a pore size of 0.45 μm. The filter was transferred onto non-nutrient agar plates seeded with Gram-negative bacteria (Escherichia coli) as a food source. The morphological key of page was used to identify free‐living amoebae (FLA) using an inverted microscope, PCR amplification targeting specific genes for each genus and sequencing determined frequent species and genotypes base on NCBI database. Results: Fifteen of the 54 samples were positive by culture and/or PCR for Acanthamoeba and other FLA from unimproved hot springs. By sequencing the positive isolates, the strains were shown to belong to Acanthamoeba castellanii (12 case isolates belonged to T4 genotype), 4 cases of V. vermiformis, and 3 cases of N. australiensis, 2 cases of N. pagei and 1 cases of N. gruberi. Conclusion: Although FLA-mediated illnesses are not as high as in environmental distribution, but because of a poor prognosis, more investigations about FLA distribution in hot springs is critical. Hot spring may enhance exposure of the amoebae in individuals. Hence, more attention to unimproved hot springs is needed to prevent free-living amoebae mediated diseases.

2016 ◽  
Vol 144 (11) ◽  
pp. 2456-2461 ◽  
Author(s):  
A. R. LATIFI ◽  
M. NIYYATI ◽  
J. LORENZO-MORALES ◽  
A. HAGHIGHI ◽  
S. J. SEYYED TABAEI ◽  
...  

SUMMARYBalamuthia mandrillaris is an opportunistic free-living amoeba that has been reported to cause cutaneous lesions and Balamuthia amoebic encephalitis. The biology and environmental distribution of B. mandrillaris is still poorly understood and isolation of this pathogen from the environment is a rare event. Previous studies have reported that the presence of B. mandrillaris in the environment in Iran may be common. However, no clinical cases have been reported so far in this country. In the present study, a survey was conducted in order to evaluate the presence of B. mandrillaris in hot-spring samples of northern Iran. A total of 66 water samples were analysed using morphological and molecular tools. Positive samples by microscopy were confirmed by performing PCR amplification of the 16S rRNA gene of B. mandrillaris. Sequencing of the positive amplicons was also performed to confirm morphological data. Two of the 66 collected water samples were positive for B. mandrillaris after morphological and molecular identification. Interestingly, both positive hot springs had low pH values and temperatures ranging from 32 °C to 42 °C. Many locals and tourists use both hot springs due to their medicinal properties and thus contact with water bodies containing the organism increases the likelihood of infection. To the best of our knowledge, this is the first report on the isolation of B. mandrillaris from hot-spring sources related to human activity. Therefore, B. mandrillaris should be considered as a possible causative agent if cases of encephalitis are suspected following immersion in hot springs in addition to Acanthamoeba and Naegleria.


2020 ◽  
Vol 18 (1) ◽  
pp. 60-66
Author(s):  
Mohammad Hossein Feiz Haddad ◽  
Habib Habibpour ◽  
Mohammad Reza Mahmoudi

Abstract Free-living amoebae (FLA) include many genera which cause serious diseases such as sight-threatening keratitis, cutaneous ulcers and fatal encephalitis. This study was conducted due to the lack of research regarding genotypes Acanthamoeba, Naegleria and Vermamoeba in mineral springs of Guilan Province in northern Iran. Twenty-five water samples were collected from mineral springs in Guilan Province. After filtration through nitrocellulose membrane, samples were cultured on non-nutrient agar plates. The morphological key of Page was used to identify free-living amoebae (FLA) using an inverted microscope. Positive cultures were analyzed by polymerase chain reaction (PCR) and genotypes based on the NCBI database. Eleven (44%) samples were positive for Acanthamoeba, Naegleria and Vermamoeba. By sequencing the positive isolates, the strains were shown to belong to Acanthamoeba castellanii (three case isolates belonged to T4 genotype), three cases of Vermamoeba vermiformis, and two cases of N. australiensis, two cases of N. pagei and one case of N. gruberi. According to our research the occurrence of Acanthamoeba, Naegleria spp. and Vermamoeba spp. in mineral springs could be hazardous for high risk persons. Regular monitoring and posting warning signs of these waters by health planners could prevent free-living amoebae mediated diseases.


Author(s):  
Eka Djatnika Nugraha ◽  
Masahiro Hosoda ◽  
June Mellawati ◽  
Untara Untara ◽  
Ilsa Rosianna ◽  
...  

The world community has long used natural hot springs for tourist and medicinal purposes. In Indonesia, the province of West Java, which is naturally surrounded by volcanoes, is the main destination for hot spring tourism. This paper is the first report on radon measurements in tourism natural hot spring water in Indonesia as part of radiation protection for public health. The purpose of this paper is to study the contribution of radon doses from natural hot spring water and thereby facilitate radiation protection for public health. A total of 18 water samples were measured with an electrostatic collection type radon monitor (RAD7, Durridge Co., USA). The concentration of radon in natural hot spring water samples in the West Java region, Indonesia ranges from 0.26 to 31 Bq L−1. An estimate of the annual effective dose in the natural hot spring water area ranges from 0.51 to 0.71 mSv with a mean of 0.60 mSv for workers. Meanwhile, the annual effective dose for the public ranges from 0.10 to 0.14 mSv with an average of 0.12 mSv. This value is within the range of the average committed effective dose from inhalation and terrestrial radiation for the general public, 1.7 mSv annually.


2014 ◽  
Vol 2 (12) ◽  
pp. 7293-7308
Author(s):  
Z. Chen ◽  
X. Zhou ◽  
J. Du ◽  
C. Xie ◽  
L. Liu ◽  
...  

Abstract. Hydrogeochemistry of 10 hot springs in the Kangding district was investigated by analyzing cation and anion concentrations of the spring waters. The water samples were collected within 5 days after the Lushan earthquake. The spring waters are classified into 7 chemical types based on the hydrochemical compositions. Comparison with the hydrochemical data before the Lushan earthquake, concentrations of Ca2+, HCO3− and TDS of the waters from the Guanding, Erdaoqiao, Gonghe, Erhaoying, Tianwanhe and Caoke springs evidently increased, which resulted from enhancing interaction between deep-earth fluids and carbonate rocks by the increment of dissolved CO2 in the groundwater. Concentrations of Na+, Cl− and SO42− of the waters from the Guanding, zheduotang, Xinxing and Gonghe springs were decreased, indicating dilution of precipitation water. Concentrations of Na+ and SO42− of the Erhaoying spring water increased, which may be attributed to the more supplement of fluids enriched in sulfur. The results indicate that hydrochemical components of spring water can be used as an effective indicator for earthquakes.


Author(s):  
Yousef Sharifi ◽  
Omid Ahmadi ◽  
Bibi Razieh Hossini Farash ◽  
Nazgol Khosravinia ◽  
Reza Fotouhi-Ardakani ◽  
...  

Abstract Free-living amoebae (FLA) are widely distributed protozoa in natural or man-made aquatic environments without the need for a host organism for survival. Several strains of FLA are known to be pathogenic. As of date, there is inadequate data on the geographical distribution of FLA in northeastern and northern Iran. This study aimed to investigate the prevalence and genotype distribution of Acanthamoeba and Naegleria in drinking water and surface water samples in northern and northeastern Iran. A total of 60 water samples were collected and filtered from various sources for the presence of amoebae. DNA extraction was performed, and PCR confirmed the presence of FLA. PCR products were sequenced to identify the species/genotype. Phylogenetic relationships and taxonomic status constructed using MEGA X software. The findings on growth media showed 35% (21/60) and 26% (16/60) were positive for Acanthamoeba and Naegleria, respectively, while PCR analysis also obtained similar results. All isolates of Acanthamoeba were identified as T4 genotype. Poor water quality, as well as insufficient preservation and treatment, might indicate that chlorine disinfection is ineffective in removing contamination of amoebas in treated water samples. Therefore, regular water quality monitoring is essential to control amoeba's growth, reducing the risk of human infections with FLA.


2000 ◽  
Vol 66 (7) ◽  
pp. 2835-2841 ◽  
Author(s):  
Sigurlaug Skirnisdottir ◽  
Gudmundur O. Hreggvidsson ◽  
Sigridur Hj�rleifsdottir ◽  
Viggo T. Marteinsson ◽  
Solveig K. Petursdottir ◽  
...  

ABSTRACT In solfataric fields in southwestern Iceland, neutral and sulfide-rich hot springs are characterized by thick bacterial mats at 60 to 80�C that are white or yellow from precipitated sulfur (sulfur mats). In low-sulfide hot springs in the same area, grey or pink streamers are formed at 80 to 90�C, and a Chloroflexusmat is formed at 65 to 70�C. We have studied the microbial diversity of one sulfur mat (high-sulfide) hot spring and oneChloroflexus mat (low-sulfide) hot spring by cloning and sequencing of small-subunit rRNA genes obtained by PCR amplification from mat DNA. Using 98% sequence identity as a cutoff value, a total of 14 bacterial operational taxonomic units (OTUs) and 5 archaeal OTUs were detected in the sulfur mat; 18 bacterial OTUs were detected in theChloroflexus mat. Although representatives of novel divisions were found, the majority of the sequences were >95% related to currently known sequences. The molecular diversity analysis showed that Chloroflexus was the dominant mat organism in the low-sulfide spring (1 mg liter−1) below 70�C, whereasAquificales were dominant in the high-sulfide spring (12 mg liter−1) at the same temperature. Comparison of the present data to published data indicated that there is a relationship between mat type and composition of Aquificales on the one hand and temperature and sulfide concentration on the other hand.


2015 ◽  
Vol 15 (6) ◽  
pp. 1149-1156 ◽  
Author(s):  
Z. Chen ◽  
X. Zhou ◽  
J. Du ◽  
C. Xie ◽  
L. Liu ◽  
...  

Abstract. Hydrogeochemistry of 10 hot springs in the Kangding district was investigated by analyzing cation and anion concentrations in the spring water. The water samples were collected in the 5 days after the Lushan MS = 7.0 earthquake, which occurred on 20 April 2013. The spring waters are classified into seven chemical types based on their hydrochemical compositions. Compared with hydrochemical data before the Lushan earthquake, concentrations of Ca2+, HCO3- and total dissolved solid (TDS) in water samples from the Guanding, Erdaoqiao, Gonghe, Erhaoying, Tianwanhe and Caoke springs significantly increased, which may be the result of a greater increase in groundwater from carbonate rocks, and water–carbonate rock interactions, enhanced by the increment of CO2. Concentrations of Na+, Cl- and SO42- in water samples from the Guanding, Zheduotang, Xinxing and Gonghe springs decreased, indicating a dilution of shallow waters. Concentrations of Na+ and SO42- in water samples from the Erhaoying spring water increased, which may be attributed to water–granite interactions enhanced by H2S. The results indicated that hydrochemical components of spring water could be used as an effective indicator for earthquakes.


2020 ◽  
Author(s):  
A. Paulina Prondzinsky ◽  
Sarah J. Berkemer ◽  
Lewis M. Ward ◽  
Shawn E. McGlynn

AbstractCyanobacteria thrive in very diverse environments. In Earth history however, delayed oxygenation has raised questions of growth limitation in ancient environmental conditions. As a single genus, the Thermosynechococcus are known to be cosmopolitan and live in chemically diverse habitats. To understand the genetic basis for this, we compared the protein coding component of Thermosynechococcus genomes. Supplementing the known genetic diversity of Thermosynechococcus, we report draft metagenome-assembled genomes of two Thermosynechococcus recovered from ferrous carbonate hot springs in Japan. We find that as a genus, Thermosynechococcus is genomically conserved, having a small pan-genome with few accessory genes per individual strain and only 18 protein clusters appearing in all Thermosynechococcus but not in any other cyanobacteria in our analysis. Furthermore, by comparing orthologous protein groups, including an analysis of genes encoding proteins with an iron related function (uptake, storage or utilization), no clear differences in genetic content, or adaptive mechanisms could be detected between genus members, despite the range of environments they inhabit. Overall, our results highlight a seemingly innate ability for Thermosynechococcus to inhabit diverse habitats without having undergone substantial genomic adaptation to accommodate this. The finding of Thermosynechococcus in both hot and high iron environments without adaptation recognizable from the perspective of protein coding genes has implications for understanding the basis of thermophily within this clade, and also suggests that ferrous iron in ancient oceans may not have inhibited the proliferation of Cyanobacteria on Earth. The conserved core genome may be indicative of an allopatric lifestyle – or reduced genetic complexity of hot spring habitats relative to other environments.


2021 ◽  
Vol 13 (1) ◽  
pp. 820-834
Author(s):  
Jun Ma ◽  
Zhifang Zhou

Abstract The exploration of the origin of hot spring is the basis of its development and utilization. There are many low-medium temperature hot springs in Nanjing and its surrounding karst landform areas, such as the Tangshan, Tangquan, Lunshan, and Xiangquan hot springs. This article discusses the origin characters of the Lunshan hot spring with geological condition analysis, hydrogeochemical data, and isotope data. The results show that the hot water is SO4–Ca type in Lunshan area, and the cation content of SO4 is high, which are related to the deep hydrogeological conditions of the circulation in the limestone. Carbonate and anhydrite dissolutions occur in the groundwater circulation process, and they also dominate the water–rock interaction processes in the geothermal reservoir of Lunshan. The hot water rising channels are deeply affected by the NW and SN faults. Schematic diagrams of the conceptual model of the geothermal water circulation in Lunshan are plotted. The origin of Tangshan, Tangquan, and Xiangquan hot springs are similar to the Lunshan hot spring. In general, the geothermal water in karst landforms around Nanjing mainly runs through the carbonate rock area and is exposed near the core of the anticlinal structure of karst strata, forming SO4–Ca/SO4–Ca–Mg type hot spring with the water temperature less than 60°C. The characters of the hot springs around Nanjing are similar, which are helpful for the further research, development, and management of the geothermal water resources in this region.


2021 ◽  
Vol 9 (7) ◽  
pp. 1473
Author(s):  
Ani Saghatelyan ◽  
Armine Margaryan ◽  
Hovik Panosyan ◽  
Nils-Kåre Birkeland

The microbial diversity of high-altitude geothermal springs has been recently assessed to explore their biotechnological potential. However, little is known regarding the microbiota of similar ecosystems located on the Armenian Highland. This review summarizes the known information on the microbiota of nine high-altitude mineralized geothermal springs (temperature range 25.8–70 °C and pH range 6.0–7.5) in Armenia and Nagorno-Karabakh. All these geothermal springs are at altitudes ranging from 960–2090 m above sea level and are located on the Alpide (Alpine–Himalayan) orogenic belt, a seismically active region. A mixed-cation mixed-anion composition, with total mineralization of 0.5 mg/L, has been identified for these thermal springs. The taxonomic diversity of hot spring microbiomes has been examined using culture-independent approaches, including denaturing gradient gel electrophoresis (DGGE), 16S rRNA gene library construction, 454 pyrosequencing, and Illumina HiSeq. The bacterial phyla Proteobacteria, Bacteroidetes, Cyanobacteria, and Firmicutes are the predominant life forms in the studied springs. Archaea mainly include the phyla Euryarchaeota, Crenarchaeota, and Thaumarchaeota, and comprise less than 1% of the prokaryotic community. Comparison of microbial diversity in springs from Karvachar with that described for other terrestrial hot springs revealed that Proteobacteria, Bacteroidetes, Actinobacteria, and Deinococcus–Thermus are the common bacterial groups in terrestrial hot springs. Contemporaneously, specific bacterial and archaeal taxa were observed in different springs. Evaluation of the carbon, sulfur, and nitrogen metabolism in these hot spring communities has revealed diversity in terms of metabolic activity. Temperature seems to be an important factor in shaping the microbial communities of these springs. Overall, the diversity and richness of the microbiota are negatively affected by increasing temperature. Other abiotic factors, including pH, mineralization, and geological history, also impact the structure and function of the microbial community. More than 130 bacterial and archaeal strains (Bacillus, Geobacillus, Parageobacillus, Anoxybacillus, Paenibacillus, Brevibacillus Aeribacillus, Ureibacillus, Thermoactinomyces, Sporosarcina, Thermus, Rhodobacter, Thiospirillum, Thiocapsa, Rhodopseudomonas, Methylocaldum, Desulfomicrobium, Desulfovibrio, Treponema, Arcobacter, Nitropspira, and Methanoculleus) have been reported, some of which may be representative of novel species (sharing 91–97% sequence identity with their closest matches in GenBank) and producers of thermozymes and biomolecules with potential biotechnological applications. Whole-genome shotgun sequencing of T. scotoductus K1, as well as of the potentially new Treponema sp. J25 and Anoxybacillus sp. K1, were performed. Most of the phyla identified by 16S rRNA were also identified using metagenomic approaches. Detailed characterization of thermophilic isolates indicate the potential of the studied springs as a source of biotechnologically valuable microbes and biomolecules.


Sign in / Sign up

Export Citation Format

Share Document