scholarly journals Figure Influence of the Barents Sea Frontal Zones on Chlorophyll Concentration in Spring

2020 ◽  
Author(s):  
Pavel Makarevich ◽  
Veronika Vodopianova ◽  
Aleksandra Bulavina ◽  
Olga Kalinka

In spring of 2016, 2018 and 2019, chlorophyll a (Chl a) content was studied in the 0-50 m layer on the vast Barents Sea area - to the north of 75∘ N. Standard sampling was carried out at 11 oceanographic transects, including 52 stations. Due to the negative ice anomalies and the high-latitude position of the ice edge, original data on Chl a concentration for spring period were obtained in hard-to-reach and previously unexplored areas of the Barents Sea. The investigation area covered the Marginal Ice Arctic zone, as well as the area where the Polar Front was located quasi-stationary. The effect of the Marginal Ice Arctic and Polar frontal zones on the distribution of Chl a concentration was revealed. The strongest factor influencing the distribution of chlorophyll was the Polar Front. It divided mainly Arctic and Atlantic waters. The highest pigment concentrations corresponded to the Arctic water mass and exceeded the content of pigment in water of Atlantic origin by an order of magnitude. The impact of the Marginal Ice Arctic Front was not so obvious - the content of Chl a in waters of various genesis differed, but not more than by a factor of 2.

Ocean Science ◽  
2016 ◽  
Vol 12 (1) ◽  
pp. 169-184 ◽  
Author(s):  
L. Oziel ◽  
J. Sirven ◽  
J.-C. Gascard

Abstract. The polar front separates the warm and saline Atlantic Water entering the southern Barents Sea from the cold and fresh Arctic Water located in the north. These water masses can mix together (mainly in the center of the Barents Sea), be cooled by the atmosphere and receive salt because of brine release; these processes generate dense water in winter, which then cascades into the Arctic Ocean to form the Arctic Intermediate Water. To study the interannual variability and evolution of the frontal zones and the corresponding variations of the water masses, we have merged data from the International Council for the Exploration of the Sea and the Arctic and Antarctic Research Institute and have built a new database, which covers the 1980–2011 period. The summer data were interpolated on a regular grid. A probability density function is used to show that the polar front splits into two branches east of 32° E where the topographic constraint weakens. Two fronts can then be identified: the Northern Front is associated with strong salinity gradients and the Southern Front with temperature gradients. Both fronts enclose the denser Barents Sea Water. The interannual variability of the water masses is apparent in the observed data and is linked to that of the ice cover. The frontal zones variability is found by using data from a general circulation model. The link with the atmospheric variability, represented here by the Arctic Oscillation, is not clear. However, model results suggest that such a link could be validated if winter data were taken into account. A strong trend appears: the Atlantic Water (Arctic Water) occupies a larger (smaller) volume of the Barents Sea. This trend amplifies during the last decade and the model study suggests that this could be accompanied by a northwards displacement of the Southern Front in the eastern part of the Barents Sea. The results are less clear for the Northern Front. The observations show that the volume of the Barents Sea Water remains nearly unchanged, which suggests a northwards shift of the Northern Front to compensate for the northward shift of the Southern Front. Lastly, we noticed that the seasonal variability of the position of the front is small.


2019 ◽  
Vol 47 (4) ◽  
pp. 62-75
Author(s):  
L. L. Demina ◽  
A. S. Solomatina ◽  
G. A. Abyzova

Zooplankton plays a Central role in the transfer of matter and energy from primary producers to high trophic organisms, and zooplankton serves as an essential component of sedimentary material that supplies organic matter to the bottom of marine basins. The paper presents new data on the distribution of a number of heavy metals (Cd, Co, Cr, Cu, Mo, Ni, Pb) and As in the Calanus zooplankton collected in July–August 2017 in the North-Eastern, Eastern and Central parts of the Barents Sea. It is shown that the spatial distribution of metals in zooplankton organisms is influenced by both biotic ecosystem factors associated with bioproductivity and hydrological and geochemical parameters of the habitat (North Polar Front). In the zooplankton of the Arctic water mass to the South-East of Franz Josef Land, there was an increased content of essential heavy metals Cu, Zn and Cr in comparison with the coastal and Atlantic water masses. Zooplankton from the Central part of the sea (Atlantic water mass), where phytoplankton production is reduced, is characterized by the lowest concentrations of most elements (Ni, Cu, Zn, As and Pb). The highest concentrations were found for both essential heavy metals (Zn and Cu) and toxic metalloid As, which may indicate non-selective bioaccumulation of trace elements by copepods.


2017 ◽  
Vol 75 (7) ◽  
pp. 2342-2354 ◽  
Author(s):  
Johanna Myrseth Aarflot ◽  
Hein Rune Skjoldal ◽  
Padmini Dalpadado ◽  
Mette Skern-Mauritzen

Abstract Copepods from the genus Calanus are crucial prey for fish, seabirds and mammals in the Nordic and Barents Sea ecosystems. The objective of this study is to determine the contribution of Calanus species to the mesozooplankton biomass in the Barents Sea. We analyse an extensive dataset of Calanus finmarchicus, Calanus glacialis, and Calanus hyperboreus, collected at various research surveys over a 30-year period. Our results show that the Calanus species are a main driver of variation in the mesozooplankton biomass in the Barents Sea, and constitutes around 80% of the total. The proportion of Calanus decreases at low zooplankton biomass, possibly due to a combination of advective processes (low C. finmarchicus in winter) and size selective foraging. Though the Calanus species co-occur in most regions, C. glacialis dominates in the Arctic water masses, while C. finmarchicus dominates in Atlantic waters. The larger C. hyperboreus has considerably lower biomass in the Barents Sea than the other Calanus species. Stages CIV and CV have the largest contribution to Calanus species biomass, whereas stages CI-CIII have an overall low impact on the biomass. In the western area of the Barents Sea, we observe indications of an ongoing borealization of the zooplankton community, with a decreasing proportion of the Arctic C. glacialis over the past 20 years. Atlantic C. finmarchicus have increased during the same period.


Author(s):  
Martin Solan ◽  
Ellie R. Ward ◽  
Christina L. Wood ◽  
Adam J. Reed ◽  
Laura J. Grange ◽  
...  

Arctic marine ecosystems are undergoing rapid correction in response to multiple expressions of climate change, but the consequences of altered biodiversity for the sequestration, transformation and storage of nutrients are poorly constrained. Here, we determine the bioturbation activity of sediment-dwelling invertebrate communities over two consecutive summers that contrasted in sea-ice extent along a transect intersecting the polar front. We find a clear separation in community composition at the polar front that marks a transition in the type and amount of bioturbation activity, and associated nutrient concentrations, sufficient to distinguish a southern high from a northern low. While patterns in community structure reflect proximity to arctic versus boreal conditions, our observations strongly suggest that faunal activity is moderated by seasonal variations in sea ice extent that influence food supply to the benthos. Our observations help visualize how a climate-driven reorganization of the Barents Sea benthic ecosystem may be expressed, and emphasize the rapidity with which an entire region could experience a functional transformation. As strong benthic-pelagic coupling is typical across most parts of the Arctic shelf, the response of these ecosystems to a changing climate will have important ramifications for ecosystem functioning and the trophic structure of the entire food web. This article is part of the theme issue ‘The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning'.


2016 ◽  
Vol 97 (8) ◽  
pp. 1605-1616 ◽  
Author(s):  
Alexey V. Golikov ◽  
Rushan M. Sabirov ◽  
Pavel A. Lubin

Studies on the quantitative distribution of cephalopods in the Arctic are limited, and almost completely absent for the Barents Sea. It is known that the most abundant cephalopods in the Arctic are Rossia palpebrosa and Gonatus fabricii. Their biomass and abundance have been assessed for the first time in the Barents Sea and adjacent waters. The maximum biomass of R. palpebrosa in the Barents Sea was 6.216–6.454 thousand tonnes with an abundance of 521.5 million specimens. Increased densities of biomass were annually registered in the north-eastern parts of the Barents Sea. The maximum biomass of G. fabricii in the Barents Sea was 24.797 thousand tonnes with an abundance of 1.705 billion specimens. The areas with increased density of biomass (higher than 100 kg km−2) and abundance (more than 10,000 specimens km−2) were concentrated in deep-water troughs in the marginal parts of the Barents Sea and in adjacent deep-water areas. The biomass and abundance of R. palpebrosa and G. fabricii in the Barents Sea were much lower than those of major taxa of invertebrates and fish and than those of cephalopods in other parts of the World Ocean. It has been suggested that the importance of cephalopods in the Arctic ecosystems, at least in terms of quantitative distribution, could be somewhat lower than in the Antarctic or the tropics. Despite the impact of ongoing warming of the Arctic on the distribution of cephalopods being described repeatedly already, no impact of the current year's climate on the studied species was found. The only exception was the abundance of R. palpebrosa, which correlated with the current year's climate conditions.


2020 ◽  
Vol 11 (4) ◽  
pp. 109-134
Author(s):  
L.V. Pavlova ◽  

The results of five-year studies (2015–2019) of the laboratory of zoobenthos MMBI RAS on the impact of environmental factors, climate change and pollution on the species diversity, structure and abundance of bottom fauna in the Barents Sea were considered. The abundance and diversity of bottom communities and taxocenoses were higher in the most warm Atlantic water masses. The warming of the Arctic contributes to increased diversity of the Barents Sea benthos, increased biological invasion in the northern seas, and maintenance of diversity in the polluted ecosystem of the Kola Bay. The technology of biomonitoring of climate change using littoral populations of invertebrates is proposed.


2015 ◽  
Vol 73 (suppl_1) ◽  
pp. i84-i97 ◽  
Author(s):  
Lis Lindal Jørgensen ◽  
Benjamin Planque ◽  
Trude Hauge Thangstad ◽  
Grégoire Certain

Abstract The development of ecosystem-based fisheries management over the last two decades has increased attention on the protection of vulnerable resources that are of little or no economic significance including bycatch of benthos in bottom trawling. Current knowledge on the response of benthic communities to the impact of trawling is still rudimentary. In the present study, we used data collected in the Barents Sea during 2011 to assess the vulnerability of benthic species to trawling, based on the risk of being caught or damaged by a bottom trawl. Using trait table analysis, we identified 23 “high-risk” benthic species, which include “large weight and upraised” taxa as “easily caught” by a bottom trawl. We further identified a “low-risk” category containing 245 taxa/species and a “medium-risk” category with 80 species. A clear decline in biomass was noted for all three categories when comparing trawled vs. untrawled areas. This suggests that trawling significantly affects the biomass of all species, but predominantly the “high-risk” taxa. Some Barents Sea regions were particularly susceptible to trawling due to the dominance of the “high-risk” species, including Geodia sponges in the southwestern Barents Sea, basket stars ( Gorgonocephalus ) in the northern Barents Sea, sea pen ( Umbellula encrinus ) on the shelf facing the Arctic Ocean, and sea cucumber ( Cucumaria frondosa ) in shallow southern areas. These findings can guide management decisions to meet targets set by the United Nations Convention of Biological Diversity and the OSPAR Commission (“Protecting and Conserving the North-East Atlantic and its Resources”). We specifically recommend management action in the southwestern and the northwestern Barents Sea and on the Arctic shelf facing the Arctic Ocean.


2020 ◽  
Vol 11 (4) ◽  
pp. 225-245
Author(s):  
Yu.V. Krasnov ◽  
◽  
A.V. Ezhov ◽  

In 2013–2019, observations on Arctic archipelagoes Novaya Zemlya and Franz-Josef Land were made. A series of multiannual monitoring of seabird colonies on the Murman coast (Kola Peninsula) were continued. The results show that large-scale negative effects on seabird populations mostly occur in areas of Atlantic water masses in the southwestern Barents Sea. On the coasts and islands ofMurman, considerable fluctuations of the number of kittiwakes and guillemots imposed on the general decreasing trend were noted. Within the Arctic water masses at Franz-Josef Land and Novaya Zemlya, the conditions of the colonies were more favorable. Geolocation data loggers helped to establish wintering and pre-breeding areas of kittiwakes and guillemots in the Barents Sea. Degradation of the seabird colonies is explained by oceanographic changes in the southern Barents Sea, along with the influence of integrative drivers such as food stock, i. e., presence and availability of capelin, and thermal conditions of the water masses determining its distribution in coastal waters.


2015 ◽  
Vol 12 (2) ◽  
pp. 449-492 ◽  
Author(s):  
L. Oziel ◽  
J. Sirven ◽  
J.-C. Gascard

Abstract. The polar front separates the warm and saline Atlantic Waters encountered in the western part of the Barents Sea from the cold and fresh Arctic Waters situated in the northern part. These water masses can mix together, mainly in the eastern part of the Barents Sea, generating dense waters in winter which can cascade into the Arctic Ocean to form the Artic Intermediate Waters. To study the interannual variability and evolution of these water masses and the fronts, we have merged data from the International Council for the Exploration of the Sea and the Arctic and Antarctic Research Institute and have built a new database which covers the period 1980–2011. The summer data is interpolated on a regular grid and a "Probability Density Function" method is used to show that the polar front splits into two branches east of 32° E where the topographic constraint weakens. Two fronts can then be defined: the "Northern Polar Front" is associated with strong salinity gradients and the "Southern Polar Front" with temperature gradients. They enclose the dense Barents Sea Water. The interannual variability of the water masses is apparent in the observed data and is linked to that of the ice cover. In contrast, the link with the Arctic Oscillation is not clear. However, results from a general circulation model suggest that such a link could be found if winter data were taken into account. A strong trend, which amplifies during the last decade, is also found: the Atlantic Water occupies a larger volume of the Barents Sea. This "Atlantification" could be accompanied by a northwards displacement of the southern polar front in the eastern part of the Barents Sea (which is suggested by a model based study) and a decrease of the volume occupied by the Arctic Waters.


Sign in / Sign up

Export Citation Format

Share Document