scholarly journals Limestone Addition Effect on Phase Composition of Red Mud Reduction Roasting Products

2017 ◽  
Vol 2 (2) ◽  
pp. 52
Author(s):  
Mikheenkov M.A. ◽  
Sheshukov O.Yu. ◽  
Lobanov D.A. ◽  
Nerkasov I.V. ◽  
Egiazaryan D.K. ◽  
...  

<p>There are millions of tons of solid waste residues accumulated in present-day alumina industry.  Those solid waste residues contain red mud and belit mud. The creation of sludge depository, its keeping and taking environmental protection measures cost up to $8-12 million a year.  However, red mud is a valuable raw material. The extraction of some useful elements from red mud makes it possible to obtain such valuable products as pig iron, iron-bearing concentrate, rare-earth elements, alumina concrete, constructional materials, etc. </p>

2017 ◽  
Vol 743 ◽  
pp. 331-337 ◽  
Author(s):  
Dmitry Zinoveev ◽  
Pavel Grudinsky ◽  
Vladimir Korneev ◽  
Valery Dyubanov ◽  
Mark Zheleznyi

Red mud is a by-product of alumina industry which is currently almost completely stored in landfill sites without further use. It contains considerable amounts of valuable components such as iron, aluminum, titanium and rare-earth metals. The reduction smelting of red mud was carried out in laboratory scale to recover iron and obtain slag suitable for use in the construction industry. It has been shown that it is expedient to obtain pig iron and slag from the unprocessed red mud. Those two are suitable for the subsequent leaching of aluminum, titanium and rare-earth metals. It is practical to process dealkalized red mud, with composition adjustment by CaO and Al2O3 addition, in order to obtain pig iron and slag in the form of aluminous clinker.


Crystals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1267
Author(s):  
Xiao Wang ◽  
Ke Sun ◽  
Xin Li ◽  
Juntao Ma ◽  
Zhongtao Luo

As a solid waste generated in the alumina industry, red mud poses a significant environmental hazard and a storage problem. In this study, red mud was added to road cement clinker in order to utilize it. The sintering red mud was first de-alkalized, and then mixed with fly ash, clay, limestone, and sandstone, among other materials, to make Portland cement for road clinker. The effect of the addition of red mud on the thermal decomposition characteristics of Portland cement for roads was studied. The existent states of alkali and radioactive elements in Portland cement for road clinker were investigated by XRD and SEM analysis. The research results showed that the addition of red mud in Portland cement for road raw material significantly promoted the decomposition of carbonates in raw material. The major mineral phases of Portland cement for road clinker were C3S with a polyhedral morphology, quasi-sphericalC2S, and tubular C4AF. A small part of the alkali combined with the silicate phase to form a solid solution, and most of the alkali combined with S to form vermiform sulfate in the intermediate phase. The radionuclide 226Ra was mainly distributed in the silicate phase.232Th was mainly distributed in interstitial phases and then silicate phases, while 40Kwasmainly distributed in the interstitial phases.


2018 ◽  
Vol 7 (6) ◽  
pp. 546-551 ◽  
Author(s):  
Liqun Xie ◽  
Tingan Zhang ◽  
Guozhi Lv ◽  
Jinlin Yang ◽  
Yanxiu Wang

Abstract The Bayer red mud generated from the alumina industry is a hazardous solid waste. In our team, a green calcification–carbonation process is proposed for its disposal. Red mud is treated with lime to convert the silicon phase in solution into hydrogarnet, which is then decomposed by CO2 to recover alumina. In order to simplify the process flow, the direct carbonation process is employed, in which the NaOH-containing solution resulting from calcification is sent directly to carbonation without prior liquid–solid separation. The discrete and direct carbonation processes gave 34.9% and 35.5% alumina recoveries, respectively, with Na2O contents in the final red muds of 0.15%wt and 0.21%wt, respectively. The optimum NaOH concentration in the whole calcification–carbonation process liquor was 40 g/l. Under this alkali condition, alumina recovery reached 40.5% and the Na2O content in the processed red mud was reduced to <1 %wt.


2012 ◽  
Vol 524-527 ◽  
pp. 902-905
Author(s):  
Hong Shun Hao ◽  
Hui Li Wang ◽  
Fang Lian ◽  
Gui Shan Liu ◽  
Zhi Qiang Hu ◽  
...  

Sialon-based eco-materials were synthesized by using the gold mineral tailings that containing abundant Si and Al elements as the major raw material with minor additives through the carbothermal reduction nitridation route. This study realized the conversion of eco-materials from solid waste, gold mineral tailings. The effects of sintering temperature, holding time and x value during carbothermal reduction nitridation process on the phase composition and microstructure of as-fabricated Sialon-based materials were explored. The XRD results indicated that when sintering temperature is 1550°C, holding time is 6h, and x value is 1.0, Ca-α-Sialon/SiC/Fe3Si composites was successfully synthesized. The relative contentSubscript textof each phase in the products is I(α-Sialon): I(SiC): I(Fe3Si)=82:10:8. The SEM images showed the densificated microstructure and uniform grains with the long column shape.


PeerJ ◽  
2019 ◽  
Vol 6 ◽  
pp. e6186 ◽  
Author(s):  
Ting-Ting Jiang ◽  
Yan Liang ◽  
Xiang Zhou ◽  
Zi-Wei Shi ◽  
Zhi-Jun Xin

Background Sweet sorghum bagasse (SSB), comprising both a dermal layer and pith, is a solid waste generated by agricultural activities. Open burning was previously used to treat agricultural solid waste but is harmful to the environment and human health. Recent reports showed that certain techniques can convert this agricultural waste into valuable products. While SSB has been considered an attractive raw material for sugar extraction and the production of value-added products, the pith root in the SSB can be difficult to process. Therefore, it is necessary to pretreat bagasse before conventional hydrolysis. Methods A thorough analysis and comparison of various pretreatment methods were conducted based on physicochemical and microscopic approaches. The responses of agricultural SSB stem pith with different particle sizes to pretreatment temperature, acid and alkali concentration and enzyme dosage were investigated to determine the optimal pretreatment. The integrated methods are beneficial to the utilization of carbohydrate-based and unknown compounds in agricultural solid waste. Results Acid (1.5−4.5%, v/v) and alkali (5−8%, w/v) reagents were used to collect cellulose from different meshes of pith at 25–100 °C. The results showed that the use of 100 mesh pith soaked in 8% (w/v) NaOH solution at 100 °C resulted in 32.47% ± 0.01% solid recovery. Follow-up fermentation with 3% (v/v) acid and 6.5% (w/v) alkali at 50 °C for enzymolysis was performed with the optimal enzyme ratio. An analysis of the surface topography and porosity before and after pretreatment showed that both the pore size of the pith and the amount of exposed cellulose increased as the mesh size increased. Interestingly, various compounds, including 42 compounds previously known to be present and 13 compounds not previously known to be present, were detected in the pretreatment liquid, while 10 types of monosaccharides, including D-glucose, D-xylose and D-arabinose, were found in the enzymatic solution. The total monosaccharide content of the pith was 149.48 ± 0.3 mg/g dry matter. Discussion An integrated technique for obtaining value-added products from sweet sorghum pith is presented in this work. Based on this technique, lignin and hemicellulose were effectively broken down, amorphous cellulose was obtained and all sugars in the sweet sorghum pith were hydrolysed into monosaccharides. A total of 42 compounds previously found in these materials, including alcohol, ester, acid, alkene, aldehyde ketone, alkene, phenolic and benzene ring compounds, were detected in the pretreatment pith. In addition, several compounds that had not been previously observed in these materials were found in the pretreatment solution. These findings will improve the transformation of lignocellulosic biomass into sugar to create a high-value-added coproduct during the integrated process and to maximize the potential utilization of agricultural waste in current biorefinery processing.


2021 ◽  
Vol 1040 ◽  
pp. 109-116
Author(s):  
V.Yu. Piirainen ◽  
A.A. Barinkova ◽  
V.N. Starovoytov ◽  
V.M. Barinkov

Current global environmental challenges and, above all, global warming associated with a change in the carbon balance in the atmosphere has led to the need for urgent and rapid search for ways to reduce greenhouse gas emissions into the atmosphere, which primarily include carbon dioxide as a by-product of human activity and technological progress. One of these ways is the creation of industries with a complete cycle of turnover of carbon dioxide. Aluminum is the most sought-after nonferrous metal in the world, but its production is not environmentally safe, so it constantly requires the development of knowledge-intensive technologies to improve the technological process of cleaning and disposal of production waste, primarily harmful emissions into the atmosphere. Another environmental problem related to aluminum production is the formation and accumulation in mud lagoon of huge amounts of so-called highly alkaline "red mud," which is a waste product of natural bauxite raw material processing into alumina - the feedstock for aluminum production. Commonly known resources and technological methods of neutralizing red mud and working with it as ore materials for further extraction of useful components are still not used because of their low productivity and cost-effectiveness. This article describes the negative impact of waste in the form of "red" mud and carbon dioxide of primary aluminum production on the environment. The results showed that thanks to carbonization of red mud using carbon dioxide, it is possible to achieve rapid curing and its compact formation for safer transportation and storage until further use. Strength tests of concrete samples filled with deactivated red mud were also carried out, which showed the prospects of using concrete with magnesia binder.


Author(s):  
E.G. Astafurova ◽  
◽  
K.A. Reunova ◽  
S.V. Astafurov ◽  
M.Yu. Panchenko ◽  
...  

We investigated the phase composition, plastic deformation and fracture micromechanisms of Fe-(25-26)Cr-(5-12)Mn-0.15C-0.55N (wt. %) high-nitrogen chromium-manganese steel. Obtained by the method of electron-beam 3D-printing (additive manufacturing) and subjected to a heat treatment (at a temperature of 1150°C following by quenching). To establish the effect of the electron-beam 3D-printing process on the phase composition, microstructure and mechanical properties of high-nitrogen steel, a comparison was made with the data for Fe-21Cr-22Mn-0.15C-0.53N austenitic steel (wt. %) obtained by traditional methods (casting and heat treatment) and used as a raw material for additive manufacturing. It was experimentally established that in the specimens obtained by additive manufacturing method, depletion of the steel composition by manganese in the electron-beam 3D-printing and post-built heat treatment contributes to the formation of a macroscopically and microscopically inhomogeneous two-phase structure. In the steel specimens, macroscopic regions of irregular shape with large ferrite grains or a two-phase austenite-ferrite structure (microscopic inhomogeneity) were observed. Despite the change in the concentration of the basic elements (chromium and manganese) in additive manufacturing, a high concentration of interstitial atoms (nitrogen and carbon) remains in steel. This contributes to the macroscopically heterogeneous distribution of interstitial atoms in the specimens - the formation of a supersaturated interstitial solid solution in the austenitic regions due to the low solubility of nitrogen and carbon in the ferrite regions. This inhomogeneous heterophase (ferrite-austenite) structure has high strength properties, good ductility and work hardening, which are close to those of the specimens of the initial high-nitrogen austenitic steel used as the raw material for additive manufacturing.


2012 ◽  
Vol 524-527 ◽  
pp. 965-968 ◽  
Author(s):  
Dan Liu ◽  
Shu Ming Wen ◽  
Yong Jun Xian ◽  
Hai Ying Shen ◽  
Shao Jun Bai ◽  
...  

A technology of “arsenic removing- sulfuric acid producing- residuals for ironmaking” is proposed for comprehensive utilization of pyrite with high content of arsenic. The effect of roasting temperature and time on arsenic removing was investigated. The arsenic removed residuals obtained under the optimal arsenic removed conditions, was used to be proceeded for sulphur volatilization test. The results demonstrate that final residuals with 63.53% of Fe can be used for steel industry. This technology can be used to fully utilize sulphur and produce high quality concentrate as iron-bearing feed for steel industry, which will help to reduce the pollution of arsenic and extend raw material sourcing for Chinese steel industry.


2015 ◽  
Vol 14 (2) ◽  
pp. 90 ◽  
Author(s):  
K. L. M. Dos Passos ◽  
B. M. Viegas ◽  
E. N. Macêdo ◽  
J. A. S. Souza ◽  
E. M. Magalhães

The use of the waste of the Bayer process, red mud, is due to its chemical and mineralogical composition that shows a material rich in oxides of iron, titanium and aluminum. Some studies conducted show that this waste can be applied as a source of alternative raw material for concentration and subsequent recovery of titanium compounds from an iron leaching process, which is present in higher amounts, about 30% by weight. To obtain a greater understanding about the leaching kinetics, the information of the kinetic data of this process is very important. In this context, the main objective of this work is the development of a mathematical model that is able to fit the experimental data (conversion / extraction iron, titanium and aluminum) of the leaching process by which is possible to obtain the main kinetic parameters such as the activation energy and the velocity of chemical reactions as well as the controlling step of the process. The development of the mathematical model was based on the model of core decreasing. The obtained model system of ordinary differential equations was able to fit the experimental data obtained from the leaching process, enabling the determination of the controlling step, the rate constants and the activation energies of the leaching process.


Sign in / Sign up

Export Citation Format

Share Document